• Title/Summary/Keyword: Phase-current detection

Search Result 288, Processing Time 0.027 seconds

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

Method Based on Sparse Signal Decomposition for Harmonic and Inter-harmonic Analysis of Power System

  • Chen, Lei;Zheng, Dezhong;Chen, Shuang;Han, Baoru
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.559-568
    • /
    • 2017
  • Harmonic/inter-harmonic detection and analysis is an important issue in power system signal processing. This paper proposes a fast algorithm based on matching pursuit (MP) sparse signal decomposition, which can be employed to extract the harmonic or inter-harmonic components of a distorted electric voltage/current signal. In the MP iterations, the method extracts harmonic/inter-harmonic components in order according to the spectrum peak. The Fast Fourier Transform (FFT) and nonlinear optimization techniques are used in the decomposition to realize fast and accurate estimation of the parameters. First, the frequency estimation value corresponding to the maxim spectrum peak in the present residual is obtained, and the phase corresponding to this frequency is searched in discrete sinusoids dictionary. Then the frequency and phase estimations are taken as initial values of the unknown parameters for Nelder-Mead to acquire the optimized parameters. Finally, the duration time of the disturbance is determined by comparing the inner products, and the amplitude is achieved according to the matching expression of the harmonic or inter-harmonic. Simulations and actual signal tests are performed to illustrate the effectiveness and feasibility of the proposed method.

Initial Rotor Position Detection a PM Synchronous Motor and Speed Control of an Elevator Door (영구자석 동기전동기의 회전자 초기위치 검출 및 엘리베이터 도어의 속도제어)

  • Song, Ki-Young;Oh, Hyun-Cheal;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.556-564
    • /
    • 2013
  • This paper proposes an initial rotor position detecting algorithm of a PM synchronous motor using an incremental encoder. The proposed algorithm estimates the phase offset between the rotor magnetic flux and the Z-pulse of the incremental encoder by applying six aligning mode current control. The absolute rotor position for driving a PM synchronous motor is calculated by using the phase offset of the Z pulse and A, B pulse signals of the encoder. The PMSM drives based on the estimated rotor position is applied to the elevator door system. The door length is measured on line at first setup of the elevator. The speed control for open, close, and reopen of the elevator door is also presented and the proposed algorithm for the elevator door system is verified by experiment.

Measurement Mothod for Internal Defect of Pipe by Using Phase Shifting Real-Time Holographic Interferometry (위상이동 실시간 홀로그래픽 간섭법을 이용한 파이프의 내부결함 측정법)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.68-75
    • /
    • 1996
  • More accurate inspection method for facilities of nuclear power plants is required to guarantee the continuous and stable energy supply. The portion of inspection for pipes and pressure vessels is relatively big in the power plants. Conventional inspection methods using ultrasonic wave, x-ray and eddy current for nondestructive testing in nuclear power plants have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money and manpower. And the area to be inspected is limited by the location of probe or film. These difficulties make the inspection into a time-consuming work. We propose an optical defect detection method using phase shifting realtime holographic interferometry. This method has an advantage that the inspection can be performed at a time for relatively wide area illuminated by the laser beam, a coherent light source and can help an inspector recognize not only defects but also the high stressed areas. In this paper we show that the quantitative measurement using holographic interferometry and image processing for defect in pressure vessels is possible.

  • PDF

Estimation of Tibia Angle through Time-Varying Complementary Filtering and Gait Phase Detection (시변 상보필터와 보행상태 추정을 이용한 경골의 기울어짐 각도추정)

  • Song, Seok-ki;Woo, Hanseung;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.944-950
    • /
    • 2015
  • Recent studies on ankle-foot prostheses used for transtibial amputees have focused on the adaptation of the ankle angle of the prosthesis according to ground conditions. For adaptation to various ground conditions (e.g., incline, decline, and step conditions), ankle-foot prostheses should first recognize the ground conditions as well as the current human motion pattern. For this purpose, the ground reaction forces and orientation angle of the tibia provide fundamental information. The measurement of the orientation angle, however, creates a challenge in practice. Although various sensors, such as accelerometers and gyroscopes, can be utilized to measure the orientation angles of the prosthesis, none of these sensors can be solely used due to their intrinsic drawbacks. In this paper, a time-varying complementary filtering (TVCF) method is proposed to incorporate the measurements from an accelerometer and a gyroscope to obtain a precise orientation angle. The cut-off frequency of TVCF is adaptively determined according to the human gait phase detected by a fuzzy logic algorithm. The performance of the proposed method is verified through experiments.

A Comparison Study on Software Testing Efforts (소프트웨어 테스트 노력의 비교 연구)

  • Choe, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.818-822
    • /
    • 2003
  • We propose a software-reliability growth model incoporating the amount of uniform and Weibull testing efforts during the software testing phase in this paper. The time-dependent behavior of testing effort is described by uniform and Weibull curves. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, the model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. The optimum release time is determined by considering how the initial reliability R(x|0) would be. The conditions are $R(x|0)>R_o$, $R_o>R(x|0)>R_o^d$ and $R(x|0)<R_o^d$ for uniform testing efforts. Ideal case is $R_o>R(x|0)>R_o^d$. Likewise, it is $R(x|0){\geq}R_o$, $R_o>R(x|0)>R_o^{\frac{1}{g}$ and $R(x\mid0)<R_o^{\frac{1}{g}}$ for Weibull testing efforts. Ideal case is $R_o>R(x|0)>R_o^{\frac{1}{g}}$.

  • PDF

Hallym Jikimi: A Remote Monitoring System for Daily Activities of Elders Living Alone (한림 지킴이: 독거노인 일상 활동 원격 모니터링 시스템)

  • Lee, Seon-Woo;Kim, Yong-Joong;Lee, Gi-Sup;Kim, Byung-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.244-254
    • /
    • 2009
  • This paper describes a remote system to monitor the circadian behavioral patterns of elders who live alone. The proposed system was designed and implemented to provide more conveniently and reliably the required functionalities of a remote monitoring system for elders based on the development of first phase prototype[2]. The developed system is composed of an in-house sensing system and a server system. The in-house sensing system is a set of wireless sensor nodes which have pyroelectric infrared (PIR) sensor to detect a motion of elder. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to caregivers (friends, family and social workers) for more cost effective intelligent care service. The improved second phase system can provide 'automatic diagnosis', 'going out detection', and enhanced user interface functionalities. We have evaluated the first and second phase monitoring systems from real field experiments of 3/4 months continuous operation with installation of 9/15 elders' houses, respectively. The experimental results show the promising possibilities to estimate the behavioral patterns and the current status of elder even though the simplicity of sensing capability.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Condition Monitoring and Fault Diagnosis System of Rotating Machinery (회전기기의 상태감시 및 결함탐지 시스템)

  • Jeong, Sung-Hak;Lee, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.819-820
    • /
    • 2016
  • Electrical power distribution is consists of high voltage, low voltage and motor control center(MCC). Motor control centers involves turning the motor on and off, it is configured electronic over current relay to detect a motor overcurrent flows. Existing electronic over current relay detects electrical fault such as overcurrent, undercurrent, phase sequence, negative sequence current, current unbalance and earth fault. However, it is difficult to detect mechanical fault such as locked rotor, motor stator and rotor and bearing fault. In this paper, we propose a condition monitoring and fault diagnosis system for electrical and mechanical fault detection of rotating machinery. The proposed system is designed with signal input and control part, system interface part and data acquisition board for condition monitoring and fault diagnosis, it was possible to detect electrical fault and mechanical fault through measurement and control of insulation resistance, locked rotor, MC counter and bearing temperature.

  • PDF

A Study on Detection Algorithm of Open Phase Fault in Grid-Connected Transformer for PV System (태양광전원 연계용변압기의 결상사고 검출 알고리즘에 관한 연구)

  • Kang, Kab-Seok;Tae, Dong-Hyun;Lee, Hu-Dong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.22-33
    • /
    • 2021
  • In the case of open phase faults caused by the disconnection of distribution feeders interconnected to a PV system, many problems can occur depending on the core type and wiring method of the grid-connected transformers. Moreover, open phase faults are difficult to detect because the open phase voltage of the existing protection relay (Open Phase Relay (47)) can be maintained, even though a disconnection fault occurred, depending on the wiring method and the iron core type of the grid-connected transformer for a PV system. Therefore, this paper proposes a novel algorithm to detect open phase faults by comparing the currents and phases between the primary and secondary sides of a grid-connected transformer. In addition, this paper presents the modeling of a distribution system and protection devices for detecting open phase faults using PSCAD/EMTDC S/W, and implements a test protection device for detecting open phase faults based on the above-mentioned modeling. The simulation and test results confirmed that the proposed algorithm is useful for detecting open phase faults according to the wiring method and iron core type of grid-connected transformer for a PV system because operation slope and unbalance rate of the primary current exceed the setting value (30[%]) of the protection device.