• Title/Summary/Keyword: Phase-current detection

Search Result 288, Processing Time 0.022 seconds

개선된 DFT을 이용한 무효전력변동 단독운전 검출기법의 성능 개선 (Performance Improvement of an Anti-Islanding Algorithm using the Variation of Reactive Power with an Improved DFT Method)

  • 강덕홍;최대근;이교범
    • 전력전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.179-187
    • /
    • 2010
  • 본 논문에서는 무효전력변동기법을 사용하여 단독운전을 검출을 하기 위해서 선행되어야 하는 주파수 검출 방법 중에서 개선된 이산푸리에변환(Discrete Fourier Transform; DFT), 즉 Goertzel 알고리즘을 이용한 단독운전 검출기법을 제안한다. 실제 태양광 발전 시스템의 설치를 위해서는 전기사고나 시스템에 악영향을 유발하는 단독운전 검출기법의 연구가 선행되어야 한다. 적용하는 주파수 검출방법은 Goertzel 알고리즘을 이용한 기법으로 기존의 영점검출기법과 가상의 2상 PLL(Phase Locked Loop)에 비하여 외란의 영향에 강인하며 빠른 검출이 가능하다. 시뮬레이션 및 실험을 통하여 기존의 주파수검출기법인 영점검출기법과 가상의 2상 PLL을 이용한 주파수 검출과 제안하는 알고리즘을 비교하고 그의 우수성을 검증하였다.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

자동차 전동 시스템을 위한 Programmable 저역 통과 필터 기반의 상전류 극성 판단 및 데드타임 보상 (Dead Time Compensation and Polarity Check of Phase Currents Based on Programmable Low-pass Filter for Automotive Electric Drive Systems)

  • 최진철;이강석;이우택
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a dead time compensation method for an AC motor drive using phase current polarity information which is detected based on a digital programmable low-pass filter (PLPF). The polarity detection using the PLPF is an alternative solution of a conventional method which uses a general low-pass filter (LPF) and hysteresis bands in order to avoid jittering due to noises. The PLPF not only adjusts its cutoff frequency according to the synchronous frequency of AC motors but also eliminates a gain attenuation and phase delay which are main problems of the general LPF. Through the PLPF, a fundamental component signal without gain and phase distortions is extracted from the measured raw current signal with noise. By use of the fundamental component, the polarity of current is effectively detected by reducing the hysteresis band. Finally, the proposed method compensates the dead time effects by adding or subtracting average voltage value to voltage references of the controller according to the detected current polarity information. The proposed compensation method is experimentally verified by compared with the conventional method.

Application of Multiple Parks Vector Approach for Detection of Multiple Faults in Induction Motors

  • Vilhekar, Tushar G.;Ballal, Makarand S.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.972-982
    • /
    • 2017
  • The Park's vector of stator current is a popular technique for the detection of induction motor faults. While the detection of the faulty condition using the Park's vector technique is easy, the classification of different types of faults is intricate. This problem is overcome by the Multiple Park's Vector (MPV) approach proposed in this paper. In this technique, the characteristic fault frequency component (CFFC) of stator winding faults, rotor winding faults, unbalanced voltage and bearing faults are extracted from three phase stator currents. Due to constructional asymmetry, under the healthy condition these characteristic fault frequency components are unbalanced. In order to balanced them, a correction factor is added to the characteristic fault frequency components of three phase stator currents. Therefore, the Park's vector pattern under the healthy condition is circular in shape. This pattern is considered as a reference pattern under the healthy condition. According to the fault condition, the amplitude and phase of characteristic faults frequency components changes. Thus, the pattern of the Park's vector changes. By monitoring the variation in multiple Park's vector patterns, the type of fault and its severity level is identified. In the proposed technique, the diagnosis of faults is immune to the effects of unbalanced voltage and multiple faults. This technique is verified on a 7.5 hp three phase wound rotor induction motor (WRIM). The experimental analysis is verified by simulation results.

PBDG의 자격 전달에 관한 연구 (A Study on the Stimulation Transmit of PBDG)

  • 김동관;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1980-1982
    • /
    • 1999
  • Conductive Langmuir-Blodgett(LB) films have recently attracted much interest from the viewpoint of ultrathin film conductors at the molecular level. The result shows that the Maxwell-displacement-current (MDC) measuring technique is useful in the detection of phase-transitions over the entire range of molecule areas. In this parer, electrical properties of PBDG Langmuir(L) films were investigated using a displacement current measuring technique with pressure stimulation. Displacement current was generated When the Spread volume $150{\mu}{\ell}$ and compression velocity was about 30, 40, 50 mm/min. In the result, it is known that current is generated of higher current peek as compression velocity become faster.

  • PDF

전류신호를 이용한 이상가공상태 검출ㆍ진단에 관한 연구 (A Study on the Detection and Diagnosis of the Abnormal Machining Process Using Current Signal)

  • 서한원;유기현;정진용;서남섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.212-216
    • /
    • 1996
  • Recently, with the development of NC and CNC machine tools and the high labor wage, the cutting process requires the high speed and automatic system which uses industrial robots and the flexible manufacturing system(FMS) that combines several machine tools. In this system, the whole system can be influenced by just one of the machin tools. So it needs to detect a problem and to solve it immediately In in-process state. The monitoring system through measuring the motor current with current sensor has been attracting the attention of lots of researchers view of its low cost and flexibility. By using the pattern discriminant with the detected three-phase-current signal, that is, $I_{RMS}$, a system which can monitor and analyze abnormal machining process condition of the workpiece during the machining will be able to be developed in this research.h.

  • PDF

전류분석을 이용한 유도 전동기의 결함분석 알고리듬 개발 (A Development of the Algorithm to Detect the Fault of the Induction Motor Using Motor Current Signature Analysis)

  • 신대철;정병훈
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.675-683
    • /
    • 2004
  • The motor current signature provides an important source of the information for the faults diagnosis of three-phase induction motor. The theoretical principles behind the generation of unique signal characteristics, which are indicative of failure mechanisms, are Presented. The fault detection techniques that can be used to diagnose mechanical Problems, stator and rotor winding failure mechanisms, and air-gap eccentricity are described. A theoretical analysis is presented which predicts the presence of unique signature patterns in the current that are only characteristics of the fault. The predictions are verified by experimental results from a special fault Producing test rig and on-site tests in a steel company. And this study have made new diagnostic algorithm for the operating induction motors with the test results. These developments are including the use of monitoring and analysis of electric current to diagnose mechanical and electrical problems and gave the precise test results automatically.

전류벡터제어시험법에 의한 IPMSM의 인덕턴스 산정 (The Inductance Computation of IPMSM using Current Vector Control Test)

  • 조규원;이정규;김규탁
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1807-1812
    • /
    • 2012
  • In this paper, the d, q-axis inductance of IPMSM(Interior Permanent Magnet Synchronous Motor) was calculated by the FEA(Finite Element Analysis). And the CVCT(Current Vector Control Test) was performed, and compared with FEA. Therefore the inductance experiment according to the variation of the current phase angle was performed. However, the error was generated in the fundamental wave detection of the voltage and current waveform. So, error has largely effect on the result of computation, it has to note specially. In addition, by using the calculated inductance, the torque calculation was performed and this result was compared through the dynamometer experiment.

피뢰기 열화진단을 위한 저항분 누설전류의 측정장치 (Measurement Device of Resistive Leakage Current for Arrester Deterioration Diagnosis)

  • 길경석;한주섭;김정배
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.469-475
    • /
    • 2003
  • Resistive leakage current flowing ZnO blocks increases with its ages, which is an important indicator of arrester deterioration. However, a complicated circuitry is essential to measure the resistive leakage current included in the total leakage current, and the difficult handling of the measurement makes few applications to the fields. In this paper, we propose a resistive leakage current measurement device which is composed of a current detection circuit and an analysis program operated on a microprocessor. The device samples the input leakage current waveform digitally, and discriminate the zero-cross and the peak point of the waveform to analyze the current amplitude vs. phase. The capacitive leakage current is then eliminated from the total leakage current by using an algorithm to extract the resistive leakage current only. Also, the device can be operated automatically and manually to analyze the resistive leakage current even when the leakage current waveform is distorted due to various types of arrester deterioration. To estimate the performance of the device, we carried out a test on ZnO blocks and lightning arresters. From the results, it is confirmed that the device could analyze most parameters needed for the arrester diagnostics such as total leakage current. resistive leakage current, and the $3^rd$ harmonic leakage current.

고속 영구자석 동기전동기 구동장치의 홀센서 고장검출 및 보호제어 (Hall Sensor Fault Detection and Fault-Tolerant Control of High-Speed PMSM Drive System)

  • 장명혁;이광운
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.205-210
    • /
    • 2013
  • This paper presents a novel hall sensor fault detection and fault-tolerant control method for a high-speed permanent magnet synchronous motor (PMSM) drive system. A phase locked loop (PLL) type position estimator is used with a conventional interpolation based rotor position estimator to reduce position errors due to misalignment of hall sensors. The expected trigger time of hall sensor's output is used for detecting hall sensor fault condition and the PLL type position estimator is reconfigured for fault-tolerant control at the hall sensor fault condition. The proposed method can minimize current ripples during the transition from sensored control using hall sensors to sensorless control. Experimental results have been proposed to prove the validity of the proposed method.