• Title/Summary/Keyword: Phase-change device

Search Result 159, Processing Time 0.034 seconds

Overview of the Current Status of Technical Development for a Highly Scalable, High-Speed, Non-Volatile Phase-Change Memory

  • Lee, Su-Youn;Jeong, Jeung-Hyun;Cheong, Byung-Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The present status of technical development of a highly scalable, high-speed non-volatile PCM is overviewed. Major technical challenges are described along with solutions that are being pursued in terms of innovative device structures and fabrication technologies, new phase change materials, and new memory schemes.

Synthesis and Analysis of Ge2Sb2Te5 Nanowire Phase Change Memory Devices

  • Lee, Jun-Yeong;Kim, Jeong-Hyeon;Jeon, Deok-Jin;Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.2-222.2
    • /
    • 2015
  • A $Ge_2Sb_2Te_5$ nanowire (GST NW) phase change memory device is investigated with Joule heating electrodes. GST is the most promising phase change materials, thus has been studied for decades but atomic structure transition in the phase-change area of single crystalline phase-change material has not been clearly investigated. We fabricated a phase change memory (PCM) device consisting of GST NWs connected with WN electrodes. The GST NW has switching performance with the reset/set resistance ratio above $10^3$. We directly observed the changes in atomic structure between the ordered hexagonal close packed (HCP) structure and disordered amorphous phase of a reset-stop GST NW with cross-sectional STEM analysis. Amorphous areas are detected at the center of NW and side areas adjacent to heating electrodes. Direct imaging of phase change area verified the atomic structure transition from the migration and disordering of Ge and Sb atoms. Even with the repeated phase transitions, periodic arrangement of Te atoms is not significantly changed, thus acting as a template for recrystallization. This result provides a novel understanding on the phase-change mechanism in single crystalline phase-change materials.

  • PDF

The study about phase phase change material at nano-scale using c-AFM method (c-AFM 기술을 이용한 나노급 상변화 소자 특성 평가에 대한 연구)

  • Hong, Sung-Hoon;Lee, Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.57-57
    • /
    • 2010
  • In this study, nano-sized phase change materials were evaluated using nanoimprint lithography and c-AFM technique. The 200nm in diameter phase change nano-pillar device of GeSbTe, AgInSbTe, InSe, GeTe, GeSb were successfully fabricated using nanoimprint lithography. And the electrical properties of the phase change nano-pillar device were evaluated using c-AFM with pulse generator and voltage source.

  • PDF

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

PRAM Switching Device By Using Current Pulse Modulation

  • Lee, Seong-Hyun;Gil, Gyu-Hyun;Lee, Jung-Min;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.384-384
    • /
    • 2012
  • PRAM switching device by using current pulse modulation was investigated to verify its possibility for 3D architecture. In this work, two phase change materials connected in series having a different crystallization temperature are used. Its structural for different phase change material was evaluated by electrical resistance. We confirmed that Germanium-Antimony-Tellurium (GST) alloy and Germanium- Copper-Tellurium (GCT) alloy material were selected according to crystallization temperature, ${\sim}180^{\circ}C$ for switching and ${\sim}240^{\circ}C$ for memory devices, respectively. From this research, it is expected that phase change switching device could have advantages of process in terms of material similarity and structural simplification.

  • PDF

Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films (비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성)

  • Chung Hong-Bay;Cho Won-Ju;Ku Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

Electrical characteristic for Phase-change Random Access Memory according to the $Ge_{1}Se_{1}Te_{2}$ thin film of cell structure (상변화 메모리 응용을 위한 $Ge_{1}Se_{1}Te_{2}$ 박막의 셀 구조에 따른 전기적 특성)

  • Na, Min-Seok;Lim, Dong-Kyu;Kim, Jae-Hoon;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1335-1336
    • /
    • 2007
  • Among the emerging non-volatile memory technologies, phase change memories are the most attractive in terms of both performance and scalability perspectives. Phase-change random access memory(PRAM), compare with flash memory technologies, has advantages of high density, low cost, low consumption energy and fast response speed. However, PRAM device has disadvantages of set operation speed and reset operation power consumption. In this paper, we investigated scalability of $Ge_{1}Se_{1}Te_{2}$ chalcogenide material to improve its properties. As a result, reduction of phase change region have improved electrical properties of PRAM device.

  • PDF

Electrical Switching Characteristics of Ge1Se1Te2 Chalcogenide Thin Film for Phase Change Memory

  • Lee, Jae-Min;Yeo, Cheol-Ho;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • The changes of the electrical conductivity in chalcogenide amorphous semiconductors, $Ge_{1}Se_{1}Te_{2}$, have been studied. A phase change random access memory (PRAM) device without an access transistor is successfully fabricated with the $Ge_{1}Se_{1}Te_{2}$-phase-change resistor, which has much higher electrical resistivity than $Ge_{2}Sb_{2}Te_{5}$ and its electric resistivity can be varied by the factor of $10^5$ times, relating with the degree of crystallization. 100 nm thick $Ge_{1}Se_{1}Te_{2}$ thin film was formed by vacuum deposition at $1.5{\times}10^{-5}$ Torr. The static mode switching (DC test) is tested for the $100\;{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device. In the first sweep, the amorphous $Ge_{1}Se_{1}Te_{2}$ thin film showed a high resistance state at low voltage region. However, when it reached to the threshold voltage, $V_{th}$, the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The pulsed mode switching of the $20{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device showed that the reset of device was done with a 80 ns-8.6 V pulse and the set of device was done with a 200 ns-4.3 V pulse.

A Study on Characteristics of Phase Change in Chalcogenide Multilayered Thin Film (칼코게나이드 다층박막의 상변화 특성에 관한 연구)

  • Choi, Hyuk;Kim, Hyun-Gu;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1426-1427
    • /
    • 2006
  • Chalcogenide based phase-change memory has a high capability and potential for the next generation nonvolatile memory device. Fast writing speed, low writing voltage, high sensing margin, low power consume and long cycle of read/write repeatability are also good advantages of nonvolatile phase-change memory. We have been investigated the new material for the phase-change memory. Its composition is consists of chalcogenide $Ge_{1}Se_{1}Te_2$ material. We made this new material to solve problems of conventional phase-change memory which has disadvantage of high power consume and high writing voltage. In the present work, we are manufactured $Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}$ and $Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}$ sandwich triple layer structure devices are manufactured to investigate its electrical properties. Through the present work, we are willing to ensure a potential of substitutional method to overcome a crystallization problem on PRAM device.

  • PDF

Electrical and thermal characteristics of PRAM with thickness of phase change thin film (상변화 박막의 두께에 따른 상변화 메모리의 전류 및 열 특성)

  • Choi, Hong-Kyw;Kim, Hong-Seung;Lee, Seong-Hwan;Jang, Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, we analyzed the heat transfer phenomenon and the reset current variation of PRAM device with thickness of phase change material using the 3-D finite element analysis tool. From the simulation, Joule's heat was generated at the contact surface of phase change material and bottom electrode of PRAM. As the thickness of phase change material was decreased, the reset current was highly increased. In case thickness of phase change material thin film was $200\;{\AA}$, heat increased through top electrode and reset current caused by phase transition highly increased. And as thermal conductivity of top electrode decreased, temperature of unit memory cell was increased.