• 제목/요약/키워드: Phase-Field Model

검색결과 569건 처리시간 0.031초

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.

배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구 (A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System)

  • 김경철;유창훈
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

Optimized Local Relocation for VLSI Circuit Modification Using Mean-Field Annealing

  • Karimi, Gholam Reza;Verki, Ahmad Azizi;Mirzakuchaki, Sattar
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.932-939
    • /
    • 2010
  • In this paper, a fast migration method is proposed. Our method executes local relocation on a model placement where an additional module is added to it for modification with a minimum number of displacements. This method is based on mean-field annealing (MFA), which produces a solution as reliable as a previously used method called simulated annealing. The proposed method requires substantially less time and hardware, and it is less sensitive to the initial and final temperatures. In addition, the solution runtime is mostly independent of the size and complexity of the input model placement. Our proposed MFA algorithm is optimized by enabling module rotation inside an energy function called permissible distances preservation energy. This, in turn, allows more options in moving the engaged modules. Finally, a three-phase cooling process governs the convergence of problem variables called neurons or spins.

자기부상/추진 일체형 차량용 LHSM의 자기형상계수를 고려한 설계와 특성해석 (Design and Analysis with the magnetic shape coefficients of Linear Homopolar Synchronous Motor for vehicles)

  • 장석명;정상섭;이성호;서진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.22-24
    • /
    • 1997
  • The 4-pole LHSM was composed of the figure-of-eight shaped 3-phase armature windings. DC field windings, and the segmented secondary with the transverse bar track. The motor was designed on the base of the performance characteristic equations and the equivalent circuit model, with the coefficients of the magnetic shape. These coefficients were computed from the analytical expressions and examined from FEM analysis. The magnetic equivalent circuit of 3-D model of LHSM was obtained. and this concept provided the equivalent models for 2-D FEM analysis. Therefore, the airgap field, the lift and thrust force were calculated and compared with the results of magnetic equivalent circuit method.

  • PDF

유한요소법에 의한 농형유도전동기 d-q 등가모델의 회로정수 산출 (Calculation of Equivalent d-q Model Parameters of A Squirrel Cage Induction Motor Using Finite Element Method)

  • 최종선;구태만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.315-317
    • /
    • 1999
  • This paper presents a method for determining of the equivalent d-q model parameters of three-phase squirrel cage induction motors. The method is based on the use of a finite-element field calculation which enables the precise slot geometry to be modelled accurately, and includes the effects of magnetic saturation of iron core. The proposed method can reduce computational costs compared with the method that needs the iterative field analysis to obtain the impedance. It is verified that the circuit inductances are shown as functions of the current.

  • PDF

연속주조공정에서의 EMBR의 수치해석 (Numerical analysis of continuous casting process with electromagnetic brake)

  • 김현경;유흥선;유수열
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Development of a three dimensional circulation model based on fractional step method

  • Abualtayef, Mazen;Kuroiwa, Masamitsu;Sief, Ahmed Khaled;Matsubara, Yuhei;Aly, Ahmed M.;Sayed, Ahmed A.;Sambe, Alioune Nar
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.14-23
    • /
    • 2010
  • A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.