• Title/Summary/Keyword: Phase segregation

Search Result 108, Processing Time 0.032 seconds

Microstructure and Hardness of 1st layer with Crystallographic Orientation of Solidification Structure in Multipass Weld using High Mn-Ni Flux Cored Wire (고(<24%)Mn 플럭스코어드와이어를 사용한 다층 용접 시 초층 응고조직의 결정면방위에 따른 미세조직과 경도)

  • Han, Il-Wook;Eom, Jung-Bok;Yun, Joong-Gil;Lee, Bong-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.77-82
    • /
    • 2016
  • In this study, Microstructure and hardness of 1st layer with crystallographic orientation were investigated about solidification structure in multipass weld using high Mn-Ni flux cored wire. Microstructure of solidification consisted of austenite matrix and a little ${\varepsilon}-phase$ in grain boundaries. Orientation of grains was usually (001), (101), (111). According to crystallographic orientation, morphology of primary dendrite was different. The depletion of Fe and the segregation of Mn, C, Ni, Si, Cu, Cr, O were found along the grain boundaries. The area of segregation was wide with an order of (001), (101), (111) grains. And hardness of grains with crystallographic orientation increased with an order of (001), (101), (111) grains because of the segregation along dendrite boundary.

Suppression of Interfacial Segregation and Control of Microstructure for Improvement of Mechanical Properties of W-Ni-Fe Heavy Alloy (계면편석 억제와 미세구조 조절에 의한 중합금의 기계적성질 향상)

  • 강석중
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.3-3
    • /
    • 1993
  • In mechanical testing of W-Ni-Pe heavy alloys, the cracks nucleate at W/W interface and propagate through W/ Imatrix interface or through matrix phase together with the cleavage of W grains. The mechanical properties can therefore be improved by control of the interfacial strength and area. In this presentation, some experimental result and techniques on this subject will be reviewed and discussed. The hydrogen embrittlement caused by the hydrogen segregation at interfaces during sintering in an hydrogen atmosphere can be removed by an heat-treattnent in vacuum or in an inert atmosphere. The heat-treatment condition can be estimated by using a diffusion equation for a cylindrical shape. The mechanical properties, in particular the impact property, are degraded by the segregation of non-metallic impurities, such as Sand P. The degradation can be prevented by adding a fourth element, such as La or Ca, active with the non-metallic impurities. The cyclic heat-treatment at usual heat-treattnent tempemture causes the penetration of matrix between W/W grain boundaries and results in remarkable increase in impact energy. This is due to an increase in the area of ductile failure during the impact test. The instability of W/matrix interface casued by addition of Mo or Re can be controlled by using W powders of different size. The increase in the interfacial area in found to be related to the presence of non-equilibrium pure W gmins among W(Mo or Re) solid solution gmins.

  • PDF

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

Y2BaCuO4 Segregarion , a Possibility of Multi-Seeding and the Origin of Diagonal Line in YBa2Cu3O7-$\delta$ Superconductor Single Crystal (YBa_{2}Cu_{3}O_{7-\delta} 고온초전도체 단결정에서의 Y_{2}BaCuO_{5} 편석과 Multi-Seeding의 가능성, 대각선 흔적의 형성 원인)

  • 성현태
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • The microstructures of top seed mult processde $\textrm{YBa}_2\textrm{Cu}_3\textrm{O}_7$.$\delta$ single crystal were studied. Although shape of the seed was not faceted. the growth shape of Y123 single crystal was faceted. It was observed that Y211 phases were trapped in specific spaces of the faceted region. From the microstructural investigation. it was suggested that the segregation of Y211 is due to the difference of growth rates in crystal direction. When a single crystal was grown by the single seed with stepped multi surfaces. a microstrue was grown from multi-seed. The microstructure show the possibility of multi-seed growth. Corn kernel like structure without Y211 phase was observed and seemed to be formed by the diffusion reaction between Y211 phase in crystal and liquid wetted on the crystal. the diagonal line on Y123 crystal was observed that it was formed by the corn kernel like structure.

  • PDF

Quantitative analysis of impurity concentration in purification of Al by segregation method (편석법에 의한 Al정련시 불순물농도의 정량적계산에 관한 연구)

  • Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.507-513
    • /
    • 1995
  • The effect of forced convention on the solute redistribution of the Al ingot was studied quantitatively in an effort to fabricate high purity aluminum using a segregation method. Based on the experimental results, the solute concentration in the solid phase tended to decrease at the early state of solidification, and then increased gradually as solidification proceeded. Fe and Si concentrations decreased as growth rate decreased and as revolution speed increased. The solute redistribution obtained from the BPS model incorporated with the tangential flow component as well as the axial flow component within the melt, agreed well with the measurements.

  • PDF

Effect of Al-5Ti-B on the Microstructure of Rheology Material (Al-5Ti-B가 레오로지 소재의 미세조직에 미치는 영향)

  • Yang Z.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Semisolid A356 slurries were prepared by electromagnetic stirring casting and by inoculation of Al-5Ti-B master alloy. As stirring time and addition of Al-5Ti-B are different, the grain size of the primary phase is different. Through the experiment of rheocast in a Buhler horizontal die casting machine, it was found that the finer the equiaxed primary dendrites, the smoother the die filling and better cast quality. Small equiaxed primary dendrite also results in less liquid segregation on the surface.

  • PDF

Analysis of A356 alloys filling behavior considering Two-Phase flow (Two-Phase Flow를 이용한 A356 합금의 충전거동 해석)

  • Seol, D.E.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

Effect of Heat-treatment on Microstructure and Tensile Properties in Cast Alloy 718 (주조 합금 Alloy 718에서 미세조직과 인장특성에 미치는 열처리의 영향)

  • Do, Jeong-Hyeon;Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.167-173
    • /
    • 2016
  • The effect of various types of heat-treatment on the mechanical properties of cast Alloy 718 has been investigated. Cast Alloy 718 bars were subjected to 'standard heat-treatment'_(SHT), 'HIP (Hot Isostatic Pressing) heat-treatment'_(HHT), and 'HIP-simulated heat-treatment'_(HS). In the absence of long time high temperature heat-treatment, a small amount of Laves phase remained in the 'SHT' specimen, and needle shaped ${\delta}$ precipitated in the vicinity of the Laves phase. Due to the formation of the Laves and ${\delta}$ phases in the 'SHT' specimen, it exhibited lower tensile properties than those of the others_specimens. On the other hand, the Laves phase was completely dissolved into the matrix after 'HHT' and 'HS' treatments. It is known that isostatic pressure reduces the self-diffusion coefficient, because of the lower self-diffusivity under HIP conditions in the interdendritic region, Nb segregation and the high amount of ${\gamma}^{{\prime}{\prime}}$ precipitation that occurs. Due to the higher fraction of coarse ${\gamma}^{{\prime}{\prime}}$ phases, the 'HHT' treated Alloy 718 showed excellent tensile strength.

The development of deformation microstructures and textures in high Mn steels (고Mn강의 소성에 따른 미세조직및 Texture 변화에 관한연구)

  • Kim, Taek-Nam;Kim, Jong-Ok
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.83-90
    • /
    • 1995
  • The microstructural and textural development during rolling is compared in two Hadifield's steels (high Mn steel), one having low carbon content (0.65 wt.%) and the other high carbon (1.35 wt.%).In low carbon Hadfield's steel (LCHS) mixed microstructures are formed which contain intrinsic stacking faults, deformation twins, and brass type shear bands. The deformation twins are thought to be formed by the stacking of intrinsic stacking faults. The similar development to 70-30 brass texture is observed in early deformation. However the abnormal texture is developed after 40 % deformation, which is thought to be due to the martensite phase transformation. In high carbon Hadfield's steel (HCHS) mixed substructures of dislocation tangles, deformation twins, and shear bands (both copper and brass type) are found to develop. The texture development is similar to that of 70-30 brass. This is consistant with no carbon segregation and no martensitic phase transformation in HCHS. In spite of the difference of substructure and texture development during rolling in two steels, the difference in stacking fault energy is measured to be small ($2 mJm^-2$). The carbon segregation is only occurred in LCHS. Thus it is thought that the carbon segregation influence the microstructure and texture development during rolling. This is related with martensite phase transformation in LCHS.

  • PDF

Process Analysis for Rheo-Forming of Aluminum Materials (알루미늄재료의 Rheo-forming을 위한 성형공정해석)

  • Seo P. K.;Jung K. Y.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF