• Title/Summary/Keyword: Phase inductance slope

Search Result 7, Processing Time 0.021 seconds

A Position Sensorless Control of Switched Reluctance Motors Based on Phase Inductance Slope

  • Cai, Jun;Deng, Zhiquan
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.264-274
    • /
    • 2013
  • A new sensorless position estimation method for switched reluctance motor (SRM) drives is presented in this paper. This method uses the change of the slope of the phase inductance to detect the aligned position. Since the aligned positions for successive electrical cycle of each phase are apart by a fixed mechanical angle $45^{\circ}$ in the case of 12/8 SRM, the speed of the machine can be calculated to estimate the rotor position. Since no prior knowledge of motor parameters is required, the method is easy for implementation without adding any additional hardware or memory. In order to verify the validity of this technique, effects such as changes in the advanced angle and phase lacking faults are examined. In addition, an inductance threshold based sensorless starting scheme is also proposed. Experimental results demonstrate the validity of the proposed method.

The Optimum Design of The Permanent Starting Device used in The Single-Phase SRM (단상 SRM에 사용되는 영구자석 기동장치의 최적 설계 I)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han;Lee, Min-Myung;Kim, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1279-1281
    • /
    • 2005
  • Generally a single-phase SRM(switched reluctance motor) has several stator and rotor poles but these are excited by one regulated current at the same time. It has only one inductance variation. It means that the positive torque is only generated in the positive slope of the inductance variation. The single-phase SRM can not be started by itself. The single-phase SRM can be started by itself if the rotor is placed in the positive slope of the inductance variation. Then, the starting device is required to place the rotor in the starting position before start. On this paper, the equation of the force requisite for the starting device is derived using by the frictional force of the rotor

  • PDF

The Optimum Design of the Permanent Magnet Starting Device used in the Single-Phase SRM (단상 SRM에 사용되는 영구자석 기동장치의 최적 설계 II)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.41-43
    • /
    • 2005
  • The single-phase SRM(switched reluctance motor) has only one inductance variation and the positive torque is not generated in all section. So, the single-phase SRM can be started by itself if the rotor is placed at the positive slope of inductance variation by the starting device. In the previous study, equation of the magnetic force of the starting device at the acting point is derived. This paper describes the calculation of the magnetic force at the acting point by making an experiments.

  • PDF

Detent Torque of Parking Magnet Starting Device Installed in the Single-Phase Switched Reluctance Motor (단상 스위치드 릴럭턴스 모터에 설치된 영구자석 기동장치의 디텐트 토크)

  • Kim, Jun-Ho;Lee, Seung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.408-412
    • /
    • 2010
  • The single-phase switched reluctance motor(SRM) generates the positive torque in the restricted section. So, it can not started by itself and the torque ripple is heavier than poly-phase. For self-starting and fixing rotating direction, the rotor should be placed at the rising inductance slope when stationary. The parking permanent magnet locates the rotor in the fixed position, which can be started by it-self. It is very simple and cost effective but has some drawbacks. It affects the rotor during the operation, so the characteristics of motor, such as a torque, speed, and ripple are changed to go bad. This paper presents the detent torque of parking magnet starting device through the finite element analysis and experiments. The finite element analysis is performed at incremental rotor positions over one detent torque cycle for any one pole. The prototype, fabricated in the previous research, is used for the experiments. The inductance, instant torque, and detent torque are calculated using the terminal voltage and phase current. Finally, the finite element analysis result and the experiment result are compared for analysis and validity.

Electromagnet Starting Device used in the Single-Phase SRM (단상 SRM에 사용되는 전자석 기동 장치)

  • Kim, Jun-Ho;Lee, Eun-Woong;Lee, Jong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.813-814
    • /
    • 2006
  • The squirrel case induction motor has widely used in the driving of the blowers but it is low efficiency and hard to control. So, the damper is used for the control of a flow and it cause to low the driving efficiency. Our laboratory has proposed the single-phase SRM(switched reluctance motor) for driving blowers. It has salient pole structure and can be reduced a number of semiconductors than three-phase SRM. But it can not be starting by itself and has heavier torque ripple than three-phase SRM. For self-starting the single-phase SRM is required the starting device which place the rotor at the rising inductance slope. On this paper, the electromagnet starting device is designed to generate the starting torque and to fix the rotating direction of the single-phase SRM which is fabricaed to use a blower.

  • PDF

Position Estimation Method of Single-Phase Hybrid SRM (단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.737-739
    • /
    • 2015
  • In this paper, a novel method of sensorless control scheme is proposed to apply on a single phase hybrid SRM used in high speed operation. The proposed method utilizes beneficially permanent magnet field whose performance is motor parameter independent to estimate the rotor position. Also, the current slope is adopted to complete the sensorless control when the motor running with heavy torque at high speed condition. Through this approach, the adjustable turn on/off position can be achieved without prior knowledge of inductance profile which is always employed by many sensorless schemes. And this paper may offer an available method to do the sensorless control in hybrid SRM used for high speed running.

  • PDF

A Sensorless Control Method of Single-Phase Hybrid SRM (단상 하이브리드 SRM의 센서리스 제어기법)

  • Tang, Ying;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.507-509
    • /
    • 2015
  • In this paper, a novel method of sensorless control scheme is proposed to apply on a single phase hybrid SRM used in high speed operation. The proposed method utilizes beneficially permanent magnet field whose performance is motor parameter independent to estimate the rotor position. Also, the current slope is adopted to complete the sensorless control when the motor running with heavy torque at high speed condition. Through this approach, the adjustable turn on/off position can be achieved without prior knowledge of inductance profile which is always employed by many sensorless schemes. And this paper may offer an available method to do the sensorless control in hybrid SRM used for high speed running.

  • PDF