• Title/Summary/Keyword: Phase identification

Search Result 698, Processing Time 0.033 seconds

Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves

  • Zhao, Na;Wu, Bin;Liu, Xiucheng;Ding, Keqin;Hu, Yanan;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.751-761
    • /
    • 2019
  • Lamb wave technology is a promising technology in the field of structural health monitoring and can be applied in the detection and monitoring of defects in plate structures. Based on the reconstruction algorithm for the probabilistic inspection of damage (RAPID), a Lamb-based detection and evaluation method of through-thickness rectangular notches in metal plates was proposed in this study. The influences of through-thickness rectangular notch length and the angle between sensing path and notch length direction on signals were further explored through simulations and experiments. Then a damage index calculation method which focuses on both phase and amplitude difference between detected signals and baseline signals was proposed. Based on the damage index difference between two vertically crossed sensing paths which pass through the notch in a sensor network, the notch direction identification method was proposed. In addition, the notch length was determined based on the damage index distribution along sensing paths. The experimental results showed that the image reconstructed with the proposed method could reflect the information for the evaluation of notches.

A Review of HAZID/Bowtie Methodology and its Improvement (해지드/보우타이 기법의 한계와 개선에 대하여)

  • Kim, Sung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.164-172
    • /
    • 2022
  • A HAZID is a brainstorming workshop to identify hazards in an early phase of a project. It should be flexible to capture all probable accidents allowing experienced participants to exploit their expertise and experiences. A bowtie analysis is a graphical representation of major accident hazards elaborating safety measures i.e. barriers. The result of these workshops should be documented in an organized manner to share as good as possible details of the discussion through the lifetime of the project. Currently results are documented using a three-step representation of an accident; causes, top event and consequences, which cannot capture correctly sequence of events leading to various accidents and roles of barrier between two events. Another problem is that barriers would be shown repeatedly leading to a misunderstanding that there are an enough number of safety measures. A new bowtie analysis method is proposed to describe an accident in multiple steps showing relations among causes or consequences. With causes and consequences shown in a format of a tree, the frequencies of having the top event (Fault tree analysis) and various consequences (Event tree analysis) are evaluated automatically based on the frequency of initiating causes and the probabilities of failure of barriers. It will provide a good description of the accident scenario and help the risk to be assessed transparently.

Critical heat flux in a CANDU end shield - Influence of shielding ball diameter

  • Spencer, Justin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1343-1354
    • /
    • 2022
  • Experiments were performed to measure the critical heat flux (CHF) on a vertical surface abutting a coarse packed bed of spherical particles. This geometry is representative of a CANDU reactor calandria tubesheet facing the end shield cavity during the in-vessel retention (IVR) phase of a severe accident. Deionized light water was used as the working fluid. Low carbon steel shielding balls with diameters ranging from 6.4 to 12.7 mm were used, allowing for the development of an empirical correlation of CHF as a function of shielding ball diameter. Previously published data is used to develop a more comprehensive empirical correlation accounting for the impacts of both shielding ball diameter and heating surface height. Tests using borosilicate shielding balls demonstrated that the dependence of CHF on shielding ball thermal conductivity is insignificant. The deposition of iron oxide particles transported from shielding balls to the heating surface is verified to increase CHF non-trivially. The results presented in this paper improve the state of the knowledge base permitting quantitative prediction of CHF in the CANDU end shield, refining our ability to assess the feasibility of IVR. The findings clarify the mechanisms governing CHF in this scenario, permitting identification of potential future research directions.

Socio-Economic Aspects of the Impact of Military Actions on the Labor Force

  • Melnyk, Stepan;Petrukha, Nina;Shuprudko, Nataliia;Ilychok, Bohdan;Balanutsa, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.252-258
    • /
    • 2022
  • Ukraine has a significant in quantity and unique in quality parameters, in particular, the level of education, a resource - the labor force, which, along with natural resources, can serve as the basis for economic growth and the achievement of sustainable development goals. The study is aimed at a thorough identification of the main factors influencing the formation and use of the labor force in Ukraine, including by comparing with the indicators of the EU countries, before the start of the active phase of military aggression by the Russian Federation. It was found that until February 24, 2022, there were negative trends in the change in the quantitative and qualitative indicators of the labor force due to the demographic crisis, the transformation of the national economy and shortcomings in state regulation of labor market development processes. The military actions not only exacerbated pre-existing problems, but also led to the emergence of new ones. A significant number of refugees and internally displaced persons, with the termination of the activities of half of the economic entities, provoked a sharp increase in real unemployment and a decrease in wages. The specific problem of the labor market of Ukraine - the "labor crisis", which has and will have a significant impact on the labor force, is carefully considered.

The Study of Selecting a Test Area for Validating the Proposal Specification of InSAS(Interferometric Synthetic Aperture Sonar) (간섭계측 합성개구소나 성능 평가를 위한 해상 시험장 선정에 관한 연구)

  • Park, Yosup;Kim, Seong Hyeon;Koh, Jieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This paper provides a case study of development testing and evaluation of design goal of Interferometric SAS (Synthetic Aperture Sonar) system that is developing supported by Civil-Military Technology Cooperation Center in offshore fields. For Deep water operating capabilities evaluation, We have surveyed candidate field, bathymetric mapping and target identification over 200 m depth, East Sea. In testing phase, We have provided environmental information of testing field include water column, seabed and weather condition in real time. And to compare excellency of developing InSAS, we have gather commercial imaging sonar system data with same target. This case study will support the Test Readiness Review of future underwater surveillance system developing via investigate marine testing field environment, testing facilities and planning.

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Development and Validation of a Unique HPLC-ELSD Method for Analysis of 1-Deoxynojirimycin Derived from Silkworms (누에에 함유된 1-Deoxynojirimycin의 분석을 위한 HPLC-ELSD 분석법 밸리데이션)

  • Hyejin Cho;Sullim Lee;Myoung-Sook Shin;Joohwan Lee;Sanghyun Lee
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.38-43
    • /
    • 2023
  • A simple and accurate assay was developed for the quantitative analysis of 1-deoxynojirimycin (1-DNJ) derived from the silkworm (Bombyx mori). Normal-phase high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD) and a hydrophilic interaction liquid chromatography column was used. Various parameters were applied to optimize the analysis method. The limits of detection and quantification of 1-DNJ were 2.97 × 10-3 and 9.00 × 10-3 mg/mL, respectively. The calibration curve showed good linearity results. The concentration range and the r2 value were 0.0625-1.0 mg/mL and 0.9997, respectively. The accuracy test demonstrated a significantly high recovery rate (89.95-103.22%). The relative standard deviation was ≤ 1.00%. Thus, a method for the accurate identification and quantitative analysis of 1-DNJ in silkworms was developed. Moreover, in this procedure, the process of derivatization of 1-DNJ, which was required in previous experiments, could be eliminated. This technique may be actively utilized for the development of pharmaceuticals and health functional foods using 1-DNJ.

Galaxy identification with the 6D friends-of-friend algorithm for high resolution simulations of galaxy formation

  • Rhee, Jinsu;Elahi, Pascal;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • Galaxy/Halo finding based on the friends-of-friend (FoF) algorithm has been widely adopted for its simplicity and expandability to the phase-space. However, cosmological simulations have been progressively bigger in size and more accurate in resolutions, resulting in that galaxy/halo finding gets computationally expensive more and more. In fact, we confirm this issue through our exercise of applying the 6-dimensional (6D) FoF galaxy finder code, VELOCIraptor (Elahi et al.2019) on the NewHorizon simulation (Dubois et al. 2021), in which typical galaxies with about 1e11 Msun (107 particles) are identified with very low speed (longer than a day). We have applied several improvements to the original VELOCIraptor code that solve the low-performance problem of galaxy finding on a simulation with high resolutions. Our modifications find the exact same FoF group and can be readily applied to any tree-based FoF code, achieving a 2700 (12) times speedup in the 3D (6D) FoF search compared to the original execution. We applied the updated version of VELOCIraptor on the entire NewHorizon simulation (834 snapshots) and identified its galaxies and halos. We present several quick comparisons of galaxy properties with those with GALAXYMaker data.

  • PDF

Analysis of the Effectiveness of Project Risk Management (PRM) on the Project Success: Focused on the Implementation Phase of Overseas Construction Projects (프로젝트 리스크 관리(PRM)가 프로젝트 성공에 미치는 효과성 분석: 해외건설사업 수행단계 전반을 중심으로)

  • Sullim Jung;Dae-Cheol Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.221-230
    • /
    • 2023
  • Under increased complexity and uncertainty of overseas construction projects, it is important for construction companies to improve their own project risk management capabilities instead of risk-taking strategies to secure competitiveness in the overseas construction market. Although most of the risks occur in project execution stage, many previous studies focused on planning stage including risk identification and analysis among PRM process. Therefore, this study aims to verify the effectiveness of whole PRM process during project execution stage through empirical study on participants of overseas construction projects. As the result it was found that first, the factor directly affects the project success is the execution process of PRM. It implies that appropriate actions such as appointing charged manager for risks, timely implementation of responding plan, continuous risk monitoring and updating established plan are the key for contribution to the project success. Second, the importance of communication in PRM is also found, which is not conducted at a specific but throughout the entire PRM process and need to be managed as essential factor for successful PRM..

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.