• Title/Summary/Keyword: Phase disturbance

Search Result 285, Processing Time 0.025 seconds

Periodic Disturbance Cancelling without Phase Delay in Cutting Process (절삭 가공시 발생하는 주기적 외란의 제거)

  • Im, Hyuk;Choi, Jong-Ho;Choi, Byung-Gab
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.800-807
    • /
    • 1999
  • A Periodic disturbance canceller is proposed to compensate for the periodic disturbance due to cutting process in a CNC machining center. The periodic disturbance canceller estimates the Periodic disturbance without phase delay. This is achieved by using linear phase low-pass filter and frequency response reciprocal filter of plant at the frequency of the periodic disturbance. This method is implemented in the position control system of the CNC machining center with general disturbance compensators in order to compensate for both the frictional force and the periodic disturbance. The experimental results are described to show its effectiveness.

  • PDF

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.

Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique (시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control (PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계)

  • Son, Young-Ik;Kim, Sung-Jong;Jeong, Goo-Jong;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Son, Young-Ik;Jeong, Yu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.110-112
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI controller for a single-phase inverter system that is robust against load changes. In this paper, we regard the output voltage changes due to various loads as disturbances of the control system, Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystems of Matlab Simulink. Compared to a simple PI control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

  • PDF

The study of Robust Control using a State-Space Disturbance Observer (상태 공간 외란관측기를 이용한 강인 제어기법 연구)

  • Cho, Kyu-Nam;Chung, Chung-Choo;Lee, Seung-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.705-707
    • /
    • 2004
  • In this paper, we propose a robust control technique against parameter uncertainties as well as external disturbances. It is robust control scheme using discrete-time state space disturbance observer. It does not require disturbance modeling, plant inverse modeling and/or Q filter. In frequency domain, its performance is evaluated in terms of sensitivity and complementary sensitivity as well as gain and phase margin. Finally we discuss design criterion of state space disturbance observer considering its performance in frequency domain.

  • PDF

A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation (부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

Power Quality Disturbance Generator with Phase Jump for the Test of Microgrid (마이크로그리드 시험을 위한 전압 위상 변동 기능을 가지는 전력품질외란 발생기)

  • Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.104-110
    • /
    • 2015
  • This paper describes a power quality disturbance generator for the test of a microgrid. The generator provides phase-angle jump as well as voltage sag with simple structure. The main components of the generator are SCR thyristors and transformers, therefore, high reliability and high efficiency can be obtained without switching losses. The operating principle of the proposed scheme is described and the voltage and current characteristics in case of voltage sag with phase-angle jump is analyzed. The usefulness of the proposed topology is verified through simulations and experimental results.

Micro-Vibration Test on a Two-Axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Choi, Hong-Taek;Park, Gee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.420-424
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting on image jitter response of a satellite. The gimbal system can be rotated on its azimuth and elevation axes, resulting in variation of its moment of inertia and structural modes, so that generates non-linear vibration characteristics. In order to estimate the jitter response, it is an indispensable process to characterize micro-vibration disturbance of the 2-axis gimbal system. In the present research, the vibration characteristics of the 2-axis gimbal system was investigated with respect to the types of stepping motors. The micro-vibration tests were performed for 2-phase and 5-phase stepping motors. The test results show that the disturbance can be reduced with vibration attenuation ratio of 60% by replacing the 2-phase stepping motor with the 5-phase one.

  • PDF

Micro-vibration Test on a Two-axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Yong, Ki-Lyuk;Choi, Hong-Taek;Park, Gee-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1042-1048
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting image jitter response of a satellite. The gimbal system comprises azimuth stage and elevation stage, and these pointing mechanism can be rotated by stepping motors about its azimuth and elevation axes simultaneously. Because of the complex and coupled dynamic motion of the gimbal system, its moment of inertia and structural modes can be changed according to the system configuration, and thus the gimbal system generates complicated and non-linear disturbance characteristics. In order to improve the jitter response of a spacecraft, it is an indispensable process to reduce the micro-vibration disturbance level of the antenna system. In the present research, a 2-axis gimbal system was manufactured and then its micro-vibration test was performed in terms of two types of stepping motors(2-phase and 5-phase). The test results show that the disturbance level of the gimbal system can be reduced by replacing the 2-phase stepping motor with the 5-phase one, and the average disturbance attenuation ratio is 56 % in peak level and 48 % in standard deviation level. The experimental results confirm that it is an efficient jitter reduction method to adopt a high-phase stepping motor.