• Title/Summary/Keyword: Phase change temperature

Search Result 1,244, Processing Time 0.03 seconds

Effects of Ethanol and Organic Acids on Color, Fishy Odor and in vitro Absorption Rate of Calcium of Dried Large Anchovy (자건대멸의 색택, 어취 및 in vitro 칼슘 흡수율에 미치는 주정과 유기산 처리의 효과)

  • Jo, Jin-Ho;Jang, Hae-Jin;Cho, Seung-Mock;Lee, Yang-Bong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1471-1476
    • /
    • 2005
  • The optimization of ethanol treatment was carried out by response surface methodology (RSM) which was expressed through change of ${\Delta}$E value for improvement of color of dried large anchovy. The optimum condition was shown as treatment with 7 volumes (v/m) of ethanol at $50^{\circ}C$ for 9 hrs. At this condition, the removal rates of trimethylamine (TMA) and fat considered as fishy odor-causing materials were 81.1 and $77.4\%$, respectively, when analyzed by solid phase microextraction (SPME)/gas chromatography and soxhlet method, respectively The effect of citric acid on the removal rate of TMA was the highest one among organic acid treatments. The removal rate of TMA was affected greatly by the concentration of organic acid rather than the temperature and time of treatment. $73\%$ of TMA was removed by treatment of $1\%$ of citric acid at $20^{\circ}C$ for 20 min. Specially, above $90\%$ of TMA could be removed by the combination of alcohol and citric acid treatment. In vitro absorption rate of calcium was also increased to $12.3\%$ by the combination of alcohol and citric acid treatment compared with $2.9\%$ of control.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Quality characteristics of fresh beef during storage using cold chain containers (저온 유통 용기에 따른 소고기의 저장 중 품질평가)

  • Kwon, Ki-Hyun;Kim, Jong-Hoon;Kim, Byeong-Sam;Cha, Hwan-Soo;Kim, Ji-Young;Kim, So-Hee
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.788-795
    • /
    • 2015
  • The efficacy of an experimentally designed cold chain container and a currently used styrofoam container was investigated with respect to important factors affecting the quality of fresh beef during storage under different conditions. The temperature in the TEPP-1 container was maintained at $5^{\circ}C$ using a phase change material (PCM) during transport and delivery. During storage in the TEPP-1 container, no significant difference was observed in pH of beef, but color decreased slightly, which does not affect the desire to purchase. After storage for 7 days, the rate of VBN and TBA in the TEPP-1 container, was lower than that in the TEPP-2 container. Drip loss was lower in the TEPP-1 container (0.87%) than in the TEPP-2 container (1.78%). No significant changes were observed in microbal count until 4 days in either of the containers, but after storage for 7 days, the count increased significantly. Microbial count in TEPP-1 was 6.65 log CFU/mL and that in TEPP-2 was 7.62 log CFU/mL. The results of sensory evaluations indicated that the overall acceptability of beef after storage for 7 days was better in the TEPP-1 container than in the TEPP-2 container. The EPS container was inferior in comparison with TEPP-1 and TEPP-2. It was impossible to continue the experiment using the EPS container after 3 days. These results suggest that the experimentally designed TEPP-1 container can be used for beef transport and delivery for 7 days without significantly affecting the quality of beef.

Thermal and Optical Properties of Cellobiose Octa(cholesteryloxycarbonyl)alkanoates (셀로비오스 옥타(콜레스테릴옥시카보닐)알카노에이트의 열 및 광학 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.230-238
    • /
    • 2008
  • The thermal and optical properties of cellobiose octa(cholestryloxycarbonyl)alkanoates CCCBn, $n=2{\sim}8$,10, the number of methylene units in the spacer) were investigated. All the samples formed monotropic cholesteric phases with left-handed helical structures. CCBn with n=2 or 10, in contrast with CCBn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the cellobiose chain. The isotropic-cholestropic transition ($T_{ic}$) and glass transition temperatures decreased with increasing n and showed no odd-even effect. The transition entropy at $T_{ic}$ increased with increasing n from 2 up 6, but at n=7 it drops significantly and then increased again with increasing n from 8 to 10. The sharp change at n=7 may be attributed to a difference in arrangement of the side groups. The thermal stability and degree of order in the mesophase and the temperature dependence of the optical pitch observed for CCBn were significantly different from those reported for the cellulose tri(cholesteryloxycarbonyl)alkanoates and glucose penta(cholesteryloxycarbonyl)alkanoates. The results were discussed in terms of the differences in the degree of polymerization, the number of the mesogenic units per mole-glucose unit, and the conformation of the molecules.

Quality characteristics of beef in thermoelectric cooling system combined with plasma during storage (열전소자 장치 및 플라즈마 처리에 의한 소고기 저장 중 품질특성)

  • Kwon, Ki-Hyun;Sung, Jung-Min;Kim, Ji-Young;Kim, Byeong-Sam;Kim, So-Hee
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.52-59
    • /
    • 2017
  • This study was performed in order to examine the effect of a thermoelectric cooling system combined with plasma on beef. Beef was studied in a box with a thermoelectric cooling system and plasma generation apparatus (TCS-1), a box with thermoelectric cooling system (TCS-2) and a polystyrene box (control). A temperature inside the thermoelectric cooling system was kept below $2^{\circ}C$, and volatile basic nitrogen (VBN) values of TCS-1 and TCS-2 were 7.72 mg% and 9.20 mg%, respectively. The thiobarbituric acid (TBA) value (0.52 mgMA/kg) of TCS-1 was significantly lower than that (0.91 mgMA/kg) of TCS-2. For volatile basic nitrogen (VBN) value, TCS-1 maintained freshness compared to TCS-2, since the freshness of TCS-1 value (6.98-9.77 mg%) was less than that of TCS-2 (6.98-11.45 mg%) during storage. The microbial counts of TCS-1 and TCS-2 were 4.62 log CFU/g and 7.09 log CFU/g, respectively, on the $7^{th}$ day, which were lower than that (8.45 log CFU/g) of control on the $3^{rd}$ day. Sensory evaluation of TCS-1 showed the highest scores for appearance, color, juiciness, and overall acceptability than the others. In conclusion, TCS-1 was effective for maintaining freshness of beef during storage.

Molecular Analysis of Growth Factor and Clock Gene Expression in the Livers of Rats with Streptozotocin-Induced Diabetes

  • Kim, Joo-Heon;Shim, Cheol-Soo;Won, Jin-Young;Park, Young-Ji;Park, Soo-Kyoung;Kang, Jae-Seon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • Many biological systems are regulated by an intricate set of feedback loops that oscillate with a circadian rhythm of roughly 24 h. This circadian clock mediates an increase in body temperature, heart rate, blood pressure, and cortisol secretion early in the day. Recent studies have shown changes in the amplitude of the circadian clock in the hearts and livers of streptozotocin (STZ)-treated rats. It is therefore important to examine the relationships between circadian clock genes and growth factors and their effects on diabetic phenomena in animal models as well as in human patients. In this study, we sought to determine whether diurnal variation in organ development and the regulation of metabolism, including growth and development during the juvenile period in rats, exists as a mechanism for anticipating and responding to the environment. Also, we examined the relationship between changes in growth factor expression in the liver and clock-controlled protein synthesis and turnover, which are important in cellular growth. Specifically, we assessed the expression patterns of several clock genes, including Per1, Per2, Clock, Bmal1, Cry1 and Cry2 and growth factors such as insulin-like growth factor (IGF)-1 and -2 and transforming growth factor (TGF)-${\beta}1$ in rats with STZ-induced diabetes. Growth factor and clock gene expression in the liver at 1 week post-induction was clearly increased compared to the level in control rats. In contrast, the expression patterns of the genes were similar to those observed after 5 weeks in the STZ-treated rats. The increase in gene expression is likely a compensatory change in response to the obstruction of insulin function during the initial phase of induction. However, as the period of induction was extended, the expression of the compensatory genes decreased to the control level. This is likely the result of decreased insulin secretion due to the destruction of beta cells in the pancreas by STZ.

The Interface Reaction Between Molten Converter Slag and $C_3A(3CaO{\cdot}Al_2O_3)$ Pellet (용융전로(熔融轉爐)슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$ 펠렛사이의 계면반응(界面反應))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.13-17
    • /
    • 2005
  • As a basic study for recycling molten converter slag as an ordinary portland cement (OPC) by a conversion process, the reaction mechanism and the rate of the formation of $C_4AF$ which is one of the main components of OPC were investigated. The converter slag whose basicity was controlled by adding reagent grade $SiO_2$ was melted and hold for 30 minutes in MgO crucible at $1300^{\circ}C{\sim}1350^{\circ}C$. Then, the sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for $10{\sim}30$minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of $C_3A$ pellet was measured by the change of radius of the sintered $C_3A$ pellet, and the formed phase of $C_4AF$ was observed by SEM/EDX. As a result, the dissolution rate of $C_3A$ pellet into molten slag was increased from $0.75{\times}10^{-4}(cm/sec)$ at $1300^{\circ}C$ to $1.67{\times}10^{-4}(cm/sec)$ at $1350^{\circ}C$, and the mixed layer of $C_4AF$ and $C_{12}A_7$ was found between slag and $C_3A$ pellet.

Phonology and Morphometrics Change of Zostera marina L. Population at Duksan Port in the Eastern Coast of Korea (동해 덕산항에 생육하는 거머리말(Zostera marina L.) 개체군의 생물계절학과 형태 변이)

  • 이상룡;이성미;김정하;최청일
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.70-77
    • /
    • 2003
  • From March 1998 to August 2000, the phenological and morphometric changes of Zostera marina L. were examined at the Duksan Port in the eastern coast of Korea. Morphometric characteristics, phenological stage, shoot density, biomass of Z. marina population and environmental parameters were also measured. Nutrient levels in water column varied over the season. Morphometric characteristics of vegetative shoot changed with season; shoot heights ranged from 54.2 cm (March) to 100.0 cm (October). Reproductive shoots appeared from mid-March to early September of which the height was ranged from 97.8 cm (March) to 213.0 cm (July). The flowering phase started at 12$^{\circ}C$ and the fruit development was resulted up to 21$^{\circ}C$. The seed maturing was developed at 22$^{\circ}C$-$25^{\circ}C$. Shoot density and biomass in permanent quadrate (0.25 m$^2$) were significantly different among seasons ranging from 38 to 136 shoots (mean 80.3$\pm$6.5) for shoot density, and 190 g dry wt m$^{-2}$ in October 1998 to 922 g dry wt m$^{-2}$ in June 1998 for biomass respectively. Relationships between shoot morphometrics and physico-chemical parameters were not significantly correlated. Seasonal changes in water temperature seemed responsible for the replacement of reproductive phases and the annual changes of shoot morphometrics in Z. marina populations.

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube (PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성)

  • Kim, Jeong Ho;Son, Kwonsang;Lee, Minho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.