• Title/Summary/Keyword: Phase Distribution

Search Result 3,008, Processing Time 0.029 seconds

Factor Analysis of the Somatosensory for Foot according to the Instability Level of Snatch Lifting (역도 인상동작 불안정성 수준에 따른 발바닥 체성감각요인 분석)

  • Moon, Young Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Objective: It is to find factors related to stability through analysis of plantar pressure factors according to the level of instability when performing Snatch. Method: Foot pressure analysis was performed while 10 weightlifters performed 80% of the highest level of Snatch, and motion was classified and analyzed in 3 grades according to the level of instability. Results: First, in Bad Motion, the movement distance of the pressure center in the direction of ML and AP was larger significantly in Phase 2. Second, in Phase 2, the number of zero-crossing in the AP direction was larger statistically significantly in Good Motion. Third, in the bad motion in Phase 3, the number of zero-crossing in the ML direction showed a significantly larger value. Fourth, in Phase 4, it was found that the more stable the lock out motion, the greater the activity of foot controlling in the left and right directions. Fifth, Phase 3, the greater the Maximum/Mean foot pressure value, the more stable the pulling action. Sixth, in Phase 2, the foot pressure was concentrated with a wide distribution in the midfoot and rearfoot. Seventh, the triggering number of the forefoot region was small in the last pull phase. Eighth, the number of triggers in the toe area was significantly higher during Good Motion in Phase 4. Conclusion: Summarizing the factors of instability in Snatch, there was no significant difference in Phase 1 for each condition. In order to enhance the stability in Phase 2, the sensory control ability in the AP direction is required, and focusing the foot pressing motion with a wide distribution in the middle and rear parts increases the instability. In Phase 3, it was found that the more unstable, the more sensory control activity was performed in the ML direction, the stronger the forefoot pressing action should be performed for a stable Snatch. In Phase 4, It is important that the feet sensory control activity in ML directions and the control ability of the toes in order to have stable Lock out motion.

Air-Water Two-phase Flow Patterns and Pressure Distributions in a Screw-type Centrifugal Pump

  • Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1203-1210
    • /
    • 2004
  • It was reported recently that the pump head degradation near the best efficiency point from single-phase flow to the break-down due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. In this paper, I carried out internal pressure measurements and visualizations, and investigated the various physical phenomena occurring inside a screw-type centrifugal pump operated in air-water two-phase flow. The results could give some characteristics about the degradation of pump performance on air-water two-phase flow.

Study on Phase-Segregated Active Power Filter using PLECS

  • Zhang, Ying-Hao;Oh, Hyoung-Lok;Lim, Han-Jun;Zhang, Wen-Hao;Kim, Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.216-217
    • /
    • 2013
  • This paper presents an algorithm for a phase-segregated active power filter for three-phase electric system. Due to the symmetrical characteristic of three-phase system and the specialty of distribution system, the proposed algorithm focuses on the extraction of harmonic component of load current in each phase and simulations have been done by PLECS software to verify the validity of the proposed algorithm while loads are nonlinear.

  • PDF

Voltage Unbalance Factor for Phase and Line Voltage (상전압 및 선간전압에 대한 불평형율)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Jong-Han;Lee, Eun-Wong;Park, Jong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.74-77
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetrical components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved at the 3-phase 4-wire system by the unbalanced load, by the conventional analytical method, line and phase voltage unbalance leads to different results due to zero-sequence component. This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

  • PDF

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Statistical treatment of the effective modulus of woven composites (평직복합재료 등가물성치의 통계학적 분포 특성)

  • 우경식;서영욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.59-62
    • /
    • 2000
  • In this study, the distribution of the effective modulus was investigated statistically Plain weave structures were modeled with random stacking phase shift angles and the effective modulus was calculated by the unit cell analysis. The analysis results indicated that the effect of random phase shift angles was significant on the modulus distribution. As the number of layers increased, the coefficient of variation decreased and higher degree of homogeneity was attained.

  • PDF

Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel (이상 스테인레스강의 변형거동에 미치는 질소의 영향)

  • 이형직;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.49-52
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied The variation of strength was correlated with the characteristic microstructures. Analysis based on Hall-Petch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces, and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism.

  • PDF

A Study on the 22.9KVY Multiground Distribution System (22.9KVY 배전방식에 관한 연구)

  • Sung Bong Byon
    • 전기의세계
    • /
    • v.22 no.6
    • /
    • pp.8-18
    • /
    • 1973
  • This paper is a part from the series study on the 22.9KVY multiground destribution system and its is divided into three parts as follow. A.C. Network Analyzer study on the load current flow when one phase line of the feeder is out of seroice because of cutting. A.C. Network Analyzer study on the increasing zero sequence current in the good feeders when one feeder is under fault of single phase short. Field test report of the common use of open telephone line on same poles of 22.9KVY distribution system.

  • PDF

On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation (변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여)

  • 민수홍;구본권
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF

Air-water two-phase distribution in an aluminum parallel flow heat exchanger header having different inlet orientations (유입 방향에 따른 알루미늄 평행류 열교환기 헤더내 공기-물 2 상류 분지 실험)

  • Kim, Nae-Hyun;Ham, Jung-Ho;Park, Tae-Kyun;Kim, Do-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2108-2112
    • /
    • 2007
  • The air and water flow distribution are experimentally studied for a round header-ten microchannel tube configuration. Three different inlet orientations (parallel, side, normal) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to 130 kg/$m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0.0 to 0.5. It is shown that, for almost all the test conditions, normal inlet yielded the best flow distribution, followed by side and parallel inlet. Possible reasoning is provided using flow visualization results.

  • PDF