• Title/Summary/Keyword: Phase Demodulation

Search Result 119, Processing Time 0.097 seconds

DDS를 이용한 중단파대 국ㆍ영문용 DSC/NBDP 개발에 관한 연구

  • 유형열;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.805-817
    • /
    • 1999
  • In this paper, the needs for introduction and adoption of MㆍHF DSC/NBDP system and for developments of its circuits and call sequences for use in the maritime mobile services for small-ships, leisure-ships and fishing ships are analyzed, discussed. Also design and implement for MㆍHF(1.6-4MHz) DSC/NBDP system is discussed. Most of casualties have been arisen from small-ships and fishing ships during last 5 years. So, the SAR schematic plans should been prepared to prevent casualties and facilitate the activities of SAR for those ships. DSC/NBDP for MㆍHF system is able to fulfill the roles of efficient SAR communication functions, and to advance the SAR system to small ships and fishing ships. This study is focused on the techniques of processing the DSC call sequences and the ARQ sequences of NBDP system. Especially ARQ sequences are expanded into processing of Korean letters, designed the call sequences and code conversion algorithm for Korean-code. It will be evaluated the availability of Korean-NBDP system. In designing the Transmitting circuits and Receiving circuits, for the carrier generation, DDS(Direct Digital Synthesizer) is used in stead of the Phase Locked Loop and frequency conversion by the mixer, BPF. And PSK modulation signals are directly generated by the controls of DDS, which show the characteristics of Spurious Free Dynamic Range are below -62dBc. Also, the monolithic U subsystem IC which provides various functional components, AD608 is used for designing the receiving circuitsㆍAnd the algorithm of Phasing methode for FSK demodulation are devised to process IF frequency 455kHz in the IF circuits.

  • PDF

Multi-Frequency Electrical Impedance Tomography System (다주파수 임피던스 단층촬영 시스템)

  • Oh, Tong-In;Cho, Seong-Phil;Kim, Sang-Min;Koo, Hwan;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.66-74
    • /
    • 2007
  • We have developed a multi-channel, multi-frequency EIT system with operating frequency of 10Hz to 500KHz. The number of digital voltmeters using phase-sensitive demodulation can be varied from 8 to 64 and we found that 16 and 32-channels are most practical. This paper describes the design, implementation, and construction of 16 and 32-channel systems. The performance of the system was thoroughly tested and we found that CMRR of the developed voltmeter is about 85dB with $100{\Omega}$ unbalancing series resistor. The SNR is greater than 99.6dB and the output impedance of the constant current source is $1{\Omega}W$ at least for all frequencies. Imaging experiments using a banana with frequency-dependent conductivity and permittivity show that frequency-difference imaging is possible using the developed system. Future works of animal and human experiments are discussed.

An Implementation of Modulation/ Demodulation System Based on the Multipath Analyses for the Acoustic-based Communication (Multipath를 고려한 수중 초음파 통신시스템의 구현)

  • 임용곤;박종원;김천석;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. For the test of autonomous underwater vehicle(AUV), underwater acoustic channel with multipath structure is introduced to mathmatical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of mulipath's effect is presented as a mathmatical equation, and the equation or SMR is simulated by MATLAB program.

  • PDF

Measurement of the Biological Active Point using the Bio-electrical impedance analysis based on the Adaptive Frequency Tracking Filter (적응주파수추적필터기반의 생체임피던스분석을 통한 생물학적활성점측정에 관한 연구)

  • Park, Hodong;Lee, Kyoungjoung;Yeom, Hojun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.109-114
    • /
    • 2013
  • The biological active points (BAP) are known as low resistance spots or good electro-permeable points. In this paper, a new method for BAP detection using the bio-impedance measurement system based on the adaptive frequency tracking filter (AFTF) and the transition event detector is presented. Also, the microcontroller process continuous time demodulation of the modulated signal by multi frequency components using the AFTF. The transition event detector based on the phase space method is applied about each frequency using the BAP equivalent model which is proposed.

A study on the Frequency Modulation-based Audio Transmission System for Short-range Underwater Optical Wireless Communications (근거리 수중 광무선 통신을 위한 주파수 변조 기반 오디오 전송 시스템 연구)

  • Kim, Yeon-Joo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.166-171
    • /
    • 2012
  • In this paper, short-range underwater wireless communication technique using visible LEDs is proposed. As an alternative to conventional acoustic system, visible LED communications show high quality and high speed data transmission characteristics. We design a frequency modulation-based optical wireless audio transmission system. The CD4046B phase-locked loop device is applied to implement the frequency modulation and demodulation. With a transmission modulation of 100 kHz, audio signal has successfully received at a transmission distance of 30 cm.

Implementation of QPSK Modem using TMS320C31 (TMS320C31을 이용한 QPSK 모뎀 구현)

  • 김광호;김종욱;조병모;김영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.817-826
    • /
    • 2001
  • In this paper, we implemented QPSK(Quadrature Phase-Shift Keying) modem which is widely used for communication systems, using a general Digital Signal Processor(DSP), TM320C31. Up to now, almost all of communication systems consist of hardware. However, the implemented system herein is composed of software and hardware part. Software part includes the modulation process, before passing D/A(Digital-to-Analog Converter) and the demodulation process, after passing A/D(Analog-to-Digital Converter) in IF(Intermediate Frequency) node. Hardware part is related to input, output and process of signal. To demonstrate the successful implementation of modem, the output results obtained from DSP processor are compared with the simulated result on the personal computer.

  • PDF

Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In;Baek, Sang-Min;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

On the Design of Demodulator and Equalizer of 9600 BPS Modem (9600 BPS Modem의 복조기와 Equalizer에 관한 연구)

  • 장춘서;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.10-15
    • /
    • 1983
  • In this paper effective methods of demodulation and equalization in a 9600 bps modem have been studied. To reduce the number of multiplications required per symbol in demodula-tion, the method of using a decimation filter is presented. In the equalizer the optimum step size and the steady state mean-squared error (MSE) are obtained from computer simulation results. The performance of the first-order carrier phase tracking loop is compared with that of the second-order loop when carrier frequency offset exists. In addition, the finite word length effects in the equalizer are studied.

  • PDF

Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR (RTL-SDR을 이용한 스테레오 주파수 변조 방송의 실시간 수신기 구현)

  • Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2019
  • A software-driven real-time frequency de-modulator is implemented with the aid of universal-serial-bus (USB) type software defined radio dongle. An analog stereo frequency modulation (FM) broadcast signal is down-converted to the basedband analog signal then converted to digital bit streams in the USB dongle. Computer software such as Matlab, Python, and GNU Radio manipulates the incoming bit streams with the technique of digital signal processing. Low pass filtering, band pass filtering, decimation, frequency discriminator, double sideband amplitude demodulation, phase locked loop, and deemphasis function blocks are implemented using such computer languages. Especially, GNU Radion is employed to realize the real-time demodulator.

Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement (비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리)

  • Won Yeol Yoon;Nam Kyu Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.