• Title/Summary/Keyword: Phase Compensation Algorithm

Search Result 223, Processing Time 0.027 seconds

Advanced-CMA Blind Equalizer by Improvement of the RCA Cost Function (RCA 비용 함수를 개선한 Advanced CMA 등화기 알고리즘)

  • Yoon, Jae-Sun;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, the concerned CMA (Constant Modulus Algorithm) adaptive equalizer convergence rate and residual inter-symbol interference using cost function in order to improved to the ACMA (Advanced CMA). The CMA method compensates amplitude but does not compensate phase. On the other hand, The RCA (Reduced Constellation Algorithm) method compensates both the amplitude and the phase but it has the convergence rate problem. MCMA method is a way to solve the phase problem of CMA method compensates both the amplitude and the phase after respectively calculating the real and imaginary components. But it is more than poor CMA method in the complexity of hardware and the compensation performance. The cost function can advantages by improving the CMA and a MCMA (Modified CMA) equalizer so that the amplitude and phase retrieval the equalization steady-state to reduce the error by using ISI and faster convergence rate and performance is good SER (Symbol Error Ratio) was confirmed by computer simulations.

Three-Phase Current Balancing Strategy with Distributed Static Series Compensators

  • Yoon, Hanjong;Yoon, Dongkwan;Choi, Dongmin;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.803-814
    • /
    • 2019
  • This paper proposes a three-phase current balancing strategy in a power transmission system employing distributed static series compensators (DSSCs). With the proposed variable quadrature voltage injection method, the DSSC emulates either an inductive or a capacitive impedance into the transmission line, and the magnitudes of the phase currents are balanced. Hence, the phase imbalances in the power transmission system are significantly reduced. As a result, the power transfer capability of the transmission lines can be improved. The operational principle of the DSSCs, the hardware structure and the control algorithm are described in detail. Finally, the theoretical analyses and the proposed strategy are experimentally verified through a scaled down transmission system with DSSC prototypes.

A Study on Series Active Power Filter Compensating Unbalanced Source Voltage in 3phase-3wire system (불평형 전원전압을 보상하는 3상3선식 직렬형 능동전력필터에 관한 연구)

  • 오재훈;한윤석;김영석;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.386-393
    • /
    • 2001
  • A series active power filter compensating current harmonics and unbalanced source voltages in a 3phase-3wire power system is presented. The system is composed of series active power filter and shunt passive filters that are tuned at 5th and 7th harmonics. The proposed series active power filter improves harmonic compensation characteristics of the shunt passive filters, reduces source side harmonic currents and compensates the unbalanced source voltages. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by a performance function, and compensation voltage for the unbalanced source voltage is calculated based on the synchronous reference frame. Some results obtained from the experimental model using the proposed method are Presented to demonstrate and confirm its validity.

  • PDF

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

A Signal Quality Measurement Algorithm for CDMA2000 1x Reverse-link (CDMA2000 1x 역방향 링크의 신호 품질 측정 알고리즘)

  • Kang, Sung-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.997-1004
    • /
    • 2012
  • In this paper, we propose and implement a signal quality measurement algorithm for CDMA2000 1x terminal. The proposed algorithm is suitable to be implemented in software on a PC-based platform and extract the received signal after carrying out equalization, PN code acquisition and tracking, frequency and phase offset compensation with 4-oversampled input signal. Then, through despreading and demodulation with the extracted signal, the proposed algorithm regenerate the reference signal to be used in measurement. The signal quality is measured using this regenerated signal and the extracted signal.

Reference compensating current estimation for active power filters in DC traction system (DC 급전 전철시스템에서의 능동전력필터 기준보상전류 추정)

  • Bae, Chang-Han
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.224-226
    • /
    • 2004
  • Digital Kalman filter is presented as a powerful approach to obtain the reference estimation of the control current for shunt active power filter. This algorithm provides the best estimate of the fundamental and harmonic frequency components from the sampled values of the line current or voltage. By adopting of the digital Kalman filtering algorithm, the structure of the control algorithm eliminates the need of a Phase locked loop(PLL) for the synchronization of the reference signal used in the compensation and it not sensitive to the distortion of the line voltage. The effectiveness of the algorithm is confirmed by the computer simulations.

  • PDF

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

The Gain and Phase Mismatch Detection Method with Closed Form Solution for LINC System Implementation (LINC 시스템 구현을 위한 닫힌 해를 갖는 크기 위상 오차 검출 기법)

  • Myoung, Seong-Sik;Lee, Il-Kyoo;Lim, Kyu-Tae;Yook, Jong-Gwan;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.547-555
    • /
    • 2008
  • This parer proposed the path mismatch detection and compensation algorithm with closed form for linear amplification with non-linear components(LINC) system implementation. The LINC system has a merit of using the high efficient amplifier by transferring the non-constant envelop signal which is high peak to average signal ratio into constant envelop signal. However, the performance degradation is very sensitive to the path mismatch such as an amplitude mismatch and a phase mismatch. In order to improve the path mismatch, the error detection and compensation method is introduced by the use of four test signals. Since the presented method has the closed form solution, the efficient and fast detection is available. The digital-IF structure of LINC system applied by the proposed error detection and compensation algorithm was implemented. The performance was evaluated with the IEEE 802.16 WiMAX baseband sinal which has 7 MHz channel bandwidth and 16-QAM. The Error Vector Magnitude(EVM) of -37.37 dB was obtained through performance test, which meets performance requirement of -24 dB EVM. As a result, the introduced error detection and compensation method was verified to improve the LINC system performance.

A Control Algorithm of Single Phase Active Power Filter based on Rotating Reference Frame (회전좌표계를 이용한 단상능동전력필터의 제어이론)

  • Kim, Jin-Sun;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1480-1482
    • /
    • 2005
  • The major causes of power quality deterioration are harmonic current through semiconductor switching device, due to use of nonlinear loads such as diodes rectifier or thyristor rectifiers. In response to this concerns, this paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. In order to make the complex calculation to be possible, the single-phase system that has two phases was made by constructing a imaginary second-phase giving time delay to load currents. In the conventional method, a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle) was made. But in this proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used as the second phase. As this control method is applied to the system of single phase, an instantaneous calculation was done rather by using the rotating reference frames that synchronizes with source-frequency than by applying instantaneous reactive power theory that uses the conventional fixed reference frames.

  • PDF

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF