• Title/Summary/Keyword: Phase Change Heat Transfer

Search Result 262, Processing Time 0.025 seconds

A study of high-power density laser welding process considering surface tension and recoil pressure (표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Analysis of the Solidification Process at a Vertical Wall With Thermal Contact Resistance (접촉열저항이 있는 수직벽에서의 응고과정 해석)

  • 이진호;모정하;황기영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.193-201
    • /
    • 1995
  • The role of thermal contact resistance between a casting and a metal mold as well as natural convection in the melt during solidification of a pure metal is numerically studied. Numerical simulation is performed for a rectangular cavity using the coordinate transformation by boundary-fitted coordinate and pure aluminum is used as the phase- change material. The influences of thermal contact resistance on the interface shape and position, solidified volume fraction, temperature field and local heat transfer are investigated.

Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases (제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • 최재찬;박형진;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Analysis of ice-formation phenomena for fully developed laminar water flow in concentric circular-tube annuli (동심원관 환상공간내의 완전히 발달된 층류유동에서 물의 결빙현상에 대한 해석)

  • Seo, Jeong-Se;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1552-1561
    • /
    • 1997
  • In this numerical study, it is investigated for the ice-formation phenomena for water flow in a concentric tube. The freezing layers of ice in both the inner and outer wall of a concentric tube are simultaneously considered. In the solution strategy, the complete set of governing equations in both the solid and liquid regions are resolved. Numerical results are obtained by varying the inner/outer wall temperatures and Reynolds number. The results show that the inner/outer wall temperatures have the great effect on the thickness of the solidification layer thereof. The shapes of ice layer in both the inner and outer wall can be expressed as a function of inverse Graetz number. As the wall temperature in inner or outer tube decreases, the heat transfer coefficients in both inner and outer ice layer surfaces increase absolutely.

Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Investigation on the cold start characteristics of PEMFC using Axiomatic Design approach (Axiomatic Design 기법을 이용한 연료전지 냉시동 특성 개선에 관한 연구)

  • Suh, Jung-Do;Lee, Sung-Ho;Ahn, Byung-Ki;Lim, Tae-Won;Yu, Ha-Na;Lee, Dai-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.17-20
    • /
    • 2008
  • Cold start of a fuel cell system is a major obstacle should be overcome as to commercialize it, especially for passenger vehicle applications. However, the cold start characteristics is so complicated since it involves various phenomenon such as ice-blocking in GDL, ionic conductivity in membrane affected by water activity with phase change, heat transfer through components such as bipolarplates or endplates, electro-chemical reactions affected by circumferential temperature and humidity as well. Axiomatic design provides a systematic method to investigate the complex phenomenon although it was developed as a methodology to establish logical design procedure by Nam P. Suh in 1990s. This paper presents a framework to approach the complex cold start problem using Axiomatic Design which features simplifying a problem through hierarchical decomposition and decoupling from the view of functional requirements and design parameters.

  • PDF

Dynamic Model of a Vertical Tube Absorber for Ammonia/water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 수직원관형 흡수기의 동적 모델)

  • 문현석;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.844-853
    • /
    • 2002
  • A dynamic model which simulates the coupled heat and mass transfer within a vertical tube absorber was developed. The liquid film is a binary mixture of two components, and both of these components are present in the vapor phase. The pressure, concentration, temperature and mass flow rate of the vapor are obtained by assuming that the pressure is uniform within an absorber. The model was applied to an absorber for an ammonia/water absorption refrigerator. The transient behaviors of the pressure, the outlet temperature and the concentration of the solution and the cooling water outlet temperature on a step change at the absorber inlet of the cooling water temperature, the vapor mass flow rate and the concentration of the solution were shown.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.