• 제목/요약/키워드: Phase Change Heat Transfer

검색결과 262건 처리시간 0.022초

상전이 물질을 함유하는 수분산 PU에서 계면활성제의 효과 (Effects of Several Surfactants in the WBPU/Octadecane as a Phase Change Material)

  • Jang, Jae-Hyuk;Lee, Young-Hee;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.287-288
    • /
    • 2003
  • Polyurethane(PU) materials have been generally used in the automobile, paint, furniture, adhesive, and textile industries. The use of Waterborne PU was motivated form the environmental point of view, i.e. reduction of solvent emissions into the atmosphere(volatile organic compounds, VOC)[1]. Generally speaking, phase change materials (PCM) have the capability of absorbing or releasing thermal energy to reduce or eliminate heat transfer at the temperature range of the particular temperature stabilizing material[2]. (omitted)

  • PDF

비점성 평면 정체 유동 응고 문제에 대한 점근적 해석 (An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem)

  • 유주식;엄용균
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

물의 밀도 역전 현상을 고려한 수평 배관내의 자연대루 및 상변화 현상의 수치적 해석 (Numerical analysis of phase change inside horizontal pipe with consideration of density inversion effect of water)

  • 정기호;정수인;김귀순;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1201-1206
    • /
    • 2004
  • This paper deals with the numerical analysis of natural convection flow induced by the density inversion effect of water inside horizontal pipe. The numerical method is based on SIMPLE/PWIM in general coordinate for its wide applicabilities. The numerical tool was validated through the comparison with the previous results concerning the density inversion effect of water It is shown that the developed numerical tool could predict the flow pattern and the heat transfer phenomena qualitatively And it is also found that the density inversion effect of water has significant effects on the flow pattern.

  • PDF

비점성 정체 유동 응고 문제에 대한 이론적 해석 (A theoretical analysis on the inviscid stagnation-flow solidification problem)

  • 유주식
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF

PCM 함유된 축열석고보드의 열환경특성 (Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material)

  • 권오훈;윤희관;한성국;안대현;심명진;조성운;박종순;김재용
    • 공업화학
    • /
    • 제21권5호
    • /
    • pp.570-574
    • /
    • 2010
  • 기존 단열재의 주된 기능은 단지 열전달을 차단하는 기능과 건물로부터 열손실을 줄여주는 기능만을 수행했다. 반면, 축열재는 특정온도 범위 내에서 열에너지를 저장 또는 방출함으로써 건물에너지 사용량을 절감할 수 있다. 축열 건자재는 실내 공기온도 변화주기를 효과적으로 조절하여 일정하게 온도를 유지시킬 수 있다. 결과적으로 냉난방시스템 기능을 효율적으로 향상시킬 수 있다. 본 연구는 건축자재로 많이 이용되고 있는 석고보드에 상변화잠열물질을 축열재로 첨가하여 그 물성과 열환경 특성을 파악하였다. 또한 축열 건자재를 활용할 때 발생가능한 문제점을 확인하였다. 마지막으로 TVOC와 HCHO 함량 분석으로부터 오염물질의 배출가능성을 조사하여 축열 건자재의 환경 친화도를 검토하였다.

미세관에서의 기포성장에 대한 수치적 연구 (Numerical Study of Bubble Growth in a Microchannel)

  • 서기철;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

용기를 고려한 응고과정의 열전달 해석(I) - 포화액의 일차원 해석 - (Heat Transfer Analysis of Freezing Processes Including Thermal Resistance of Mold(I) - One - dimensional Analysis of Saturated Liquid -)

  • 유재석
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.377-381
    • /
    • 1988
  • Effects of thermal resistance of mold during freezing processes have been investigated. Saturated liquid is chosen to present one-dimensional quasi-steady solution and this solution is compared with numerical solutions. Front tracking finite element method has been applied for the numerical solutions. Results show that mold should be considered as well as phase change material except the cases when the very thin mold with relatively high thermal conductivity is used.

  • PDF

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

초고온 상변화 물질을 이용한 열회수장치 개발:Part I 축열재 모듈의 열전달 현상 해석 (Development of a Heat Regenerator Using High Temperature Phase Change Material : Part I Prediction of Heat Transfer Phenomena in a Single Module of Phase Change Material)

  • 박준규;서경원;김상진
    • 에너지공학
    • /
    • 제2권3호
    • /
    • pp.258-267
    • /
    • 1993
  • 본 연구에서는 초고온 잠열 축열재를 이용한 에너지 저장 시스템을 개발하기 위한 첫 단계로 에너지 저장 시스템 내부를 구성하는 단일 축열재 모듈에 대한 축방열 특성에 관한 수치모델을 개발하였다. 잠열축열재는 Si와 Al이 각각 96.8%와 2.7%인 합금으로 Ca, Fe 및 Ti 등의 불순물을 함유하고 있으며, 그것을 둘러 싼 캡슬은 SiC와 흑연이 각각 58%와 42%인 합금으로 융점은 약 1673 K다. 재료분석 결과에 준하여 수치모델 개발에 필요한 물리·화학적 데이타를 참고문헌으로부터 인용하였으며 유체의 온도와 속도를 축열재의 축방열 특성에 관한 변수로 사용하였다. 상전이에 관한 해석은 겉보기 열용량 법(apparent capacity method)과 postiterative 법의 장점들을 이용하여 해석하였다. 수치해석 결과 가스의 온도가 실제 조업에 가까운 1773 K의 경우 잠열재가 축방향으로 빨리 용융되고 상대적으로 가스의 온도가 높아 온도 차이가 큰 3000 K의 경우 잠열재가 반경방향으로 빨리 용융되는 현상이 일어났다. 가스의 유속은 온도에 관계없이 느린 경우에만 용융시간에 영향을 주고 빠른 경우에는 융용시간이나 용융형태에 거의 영향을 주지 못하며, 유속이 느릴수록 축열재 내부 온도구배의 앞·뒤 비대칭성이 심해지는 것이 예측되었다.

  • PDF

공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 -)

  • 정광섭;김민수;김용찬;박경근;박병윤;조금남
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.