• Title/Summary/Keyword: Phase Chang

Search Result 3,010, Processing Time 0.038 seconds

Digital Implementation of PWM Techniques for Two-phase Eight-switch Inverter fed Brushless DC Motor Drives

  • Lin, Hai;You, Yong-Min;Cheon, Sung-Rock;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.295-303
    • /
    • 2013
  • This paper reports an investigation of pulse width modulation (PWM) techniques for two-phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-degree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

A Study on the Comparision of Performance between Three-phase Full-wave and Single-phase Full-wave X-ray Generators (삼상(三相)12펄스 전파정류장치(全波整流裝置)와 단상(單相) 전파정류장치(全波整流裝置)의 성능(性能) 비교(比較))

  • Kim, Young-Ill;Kim, Chang-Kyun;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.81-86
    • /
    • 1980
  • To compare three-phase 12-pulse full-wave X-ray generators with single-phase full-wave X-ray generators on their performance of outputs, authors studied the generating X-ray by means of exposure dose and radiographic density. The results were as follows; 1. The exposure doses of three-phase full-wave X-ray generators showed a 30%-60% increase as compared against of single-phase full-wave generators. 2. The transmitted doses of three-phase full-wave generators were more increased than single-phase full-wave X-ray generators. 3. To obtain the same density, 60kVp in three-phase full-wave generators were equivalent to $60{\sim}65kVp$ in single-phase full-wave generators, and 100kVp in those generators were equivalent to $100{\sim}125kVp$ in these generators.

  • PDF

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

Process Parameter Control of Arc Melting Process for Ti3SiC2 MAX Phase Synthesis (Ti3SiC2 MAX Phase 합성을 위한 Arc Melting 공정 제어)

  • Nou, Chang Wan;Kim, Byeong Guen;Bae, Sang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.515-520
    • /
    • 2020
  • The Ti3SiC2 MAX phase was synthesized by arc-melting process under three different processing times. We confirmed that the reaction between the TiCX phase and Ti-Si liquid phase is important for the synthesis of the Ti3SiC2 MAX phase. Results suggest that the Ti3SiC2 MAX phase decomposed when the arc-melting time was greater than 80s. Herein, we aim to determine the detailed parameters for the reported arc-melting process, which can provide useful insights on the synthesis of the Ti3SiC2 MAX phase by arc-melting process. Furthermore, we compared the electrical characteristics and densities of the three samples.

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.