• 제목/요약/키워드: Pharmacology, adrenergic receptor agonists: clonidine

검색결과 4건 처리시간 0.016초

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

아드레날린 수용체가 백서 좌골신경의 신경전도에 미치는 영향 (Effect of Adrenergic Receptors on the Nerve Conduction in Rat Sciatic Nerves)

  • 이청;정성량;최윤;임중우;임항수;양현철;한성민;공현석;임승운
    • The Korean Journal of Pain
    • /
    • 제12권2호
    • /
    • pp.177-182
    • /
    • 1999
  • Background: Clonidine, an ${\alpha}_2$ adrenergic agonist blocks nerve conduction. However, in our previous experiment we found that adrenaline neither blocks nerve conduction by itself nor augment nerve conduction blockade by lidocaine near clinical concentrations. Possible explanations are: 1) there may be antagonism between some of adrenergic receptors, 2) clonidine may block nerve conduction via non-adrenergic mechanism. The purpose of this study is to obtain dose-response curves of several different forms of adrenergic receptor agonist to see the relative potencies of each adrenergic receptors to block nerve conduction. Methods: Recordings of compound action potentials of A-fiber components (A-CAPs) were obtained from isolated sciatic nerves of adult male Sprague-Dawley rats. Nerve sheath of the sciatic nerve was removed and desheathed nerve bundle was mounted on a recording chamber. Single pulse stimuli (0.5 msec, supramaximal stimuli) were repeatedly applied (2Hz) to one end of the nerve and recordings of A-CAPs were made on the other end of the nerve. Dose-response curves of epinephrine, phenylephrine, isoproterenol, clonidine were obtained. Results: $ED_{50}$ of each adrenergic agonist was: $4.51\times10^{-2}$ M for epinephrine; phenylephrine, $7.74\times10^{-2}$ M; isoproterenol, $9.61\times10^{-2}$ M; clonidine, $1.57\times10^{-3}$ M. Conclusion: This study showed that only clonidine, ${\alpha}_2$ adrenergic agonist, showed some nerve blocking action while other adrenergic agonists showed similar poor degree of nerve blockade. This data suggest that non-effectiveness of epinephrine in blocking nerve conduction is not from the antagonism between adrenergic receptors.

  • PDF

개구리 피부에 있어서 Na 수송을 조절하는 Adrenoceptors에 관한 연구 (Studies on Adrenoceptors Involved in Regulation of Sodium Transport in Frog Skin)

  • 최봉규;김경근;김흥규;국영종
    • 대한약리학회지
    • /
    • 제22권1호
    • /
    • pp.24-33
    • /
    • 1986
  • 본 연구에서는 개구리(Rana nigromaculata)의 피부에 있어서 전위차(PD), 단락전류(SCC) 및 total skin conductance(TSC)에 미치는 제종 adrenergic agonist 및 그 차단제의 영향을 관찰하여 개구리 피부에 adrenoceptors의 존재를 확인하고 Na 수송에 있어 그들의 역할을 구명코자 하였다. 1.Norepinephrine(NE, $6{\times}10^{-8}-6{\times}10^{-5}M$), phenylephrine($PE,5{\times}10^{-6}-5{\times}10^{-4}M$)의 PD 및 epinephrine(Epi, $5.5{\times}10^{-7}-5.5{\times}10^{-5}M$)의 PD 및 SCC 증가효과는 약물의 투여농도에 비례하였으며, Epi의 최대효과는 NE나 PE의 것보다 약하였다. 2. 이러한 PD 및 SCC의 증가효과는 alpha 1 adrenoceptor 차단체인 prazosin $2{\times}10^{-6}M$에 의해서 억제되었으며, 특히 Epi의 증가효과는 불가역성 alpha receptor 차단제인 phenoxybenzamine $3.3{\times}10^{-5}M$에 의하여 완전히 차단되며 대량의 Epi에 의해서는 PD 및 SCC의 감소를 초래하였다. 3. Beta adrenoceptor agonist인 isoproterenol$(5{\times}10^{-7}-5{\times}10^{-6}M)$에 의해 농도증가에 비례한 PD 및 SCC의 감소가 일어났으며, 이는 선택적 bete receptor 차단제인 propranolol $4{\times}10^{-6}M$에 의해 차단되었다. 또한 Epi의 PD 및 SCC 증가효과는 propranolol $4{\times}10M$에 의하여 강화됨을 볼 수 있었다. 4. Alpha 2 adrenoceptor agonist인 clonidine 및 guanabenz도 PD 및 SCC의 증가를 가져왔으며 이러한 효과는 alpha 2 receptor 차단제인 yohimbine에서 보다 Alpha 1 receptor 차단제인 prazosin에 의해 더 잘 억제되었다. 이상 실험의 결과 개구리 복부피부에도 포유동물에서와 같이 adrenergic alpha 및 beta receptor가 존재하며 alpha receptor는 PD 및 SCC의 증가를, beta receptor는 PD 및 SCC의 감소를 매개하여, 개구리 피부의 Na 수송에 있어 adrenergic system이 중요한 조절작용을 하고 있음을 알 수 있었다. 그러나 여기에 관여하는 alpha receptor는 다른 포유류에서와 같이 alpha 1 및 alpha 2 adrenoceptor로 구분할 수는 없었다.

  • PDF

정관운동에 있어서 prostaglandin 의 역할에 관한 연구 (The Study on the Role of Prostaglandin in Contraction of Vas Deferens)

  • 박원규
    • 대한약리학회지
    • /
    • 제19권2호
    • /
    • pp.1-8
    • /
    • 1983
  • Prostaglandin(PG) is ubiquitously distributed in most mammalian tissue and their actions are complicated. Especially in autonomic nervous system, there are evidences indicating that PGs act as neuromodulators i.e., PGs, which are released in the vicinity of autonomic neuroeffector junctions, influence the release and the response of the neurotransmitter. Present study was undertaken to elucidate the interrelationship between $PGF_{2\alpha}$ and adrenergic ${\alpha}_2-receptor$ function in electrical field stimulation induced contractile response of vas deferens in rat. Male rat, weighing 150{\sim}200\;g, was sacrificed and vas deferens was obtained. The isolated vas deferens strip was placed between two platinum electrodes in temperature controlled $(37^{\circ}C)$ muscle chamber containing Tyrode's solution and the electrical field stimulation(EFS) induced contraction was recorded with Grass Polygraph(Model 7) via force displacement transducer (FT .03, Grass). The results are summarized as follows: 1) Electrical field stimulation for 1sec( 1 msec, 40 cps) induced contraction of vas deferens was completely blocked by tetrodotoxin. 2) Bretylium caused marked inhibition of the EFS-induced contraction, hut tyramine and cocaine augmented the contraction. 3) EFS-induced contraction was inhibited or little affected in distal portion of vas deferens by norepinephrine or methoxamine, but the contraction was rather augmented by the ${\alpha}-agonists$ in proximal portion. 4) Clonidine inhibited the EFS-induced contraction proportionally to the concentration in distal portion, which was blocked by yohimbine pretreatment, but in the presence of $PGF_{2\alpha}$ the blockade by yohimbine was reversed. 5) Indomethacin pretreatment reduced the effect of clonidine, but addition of $PGF_{2\alpha}$ after washing-out the indomethacin caused the contraction to the control level. From these results it is suggested that PG synthesis is a necessary step and the PG itself has a permissive role in ${\alpha}_2-adrenoceptor$ action in rat vas deferens.

  • PDF