• 제목/요약/키워드: Pharmacological active ingredient

검색결과 23건 처리시간 0.022초

시스템 약리학적 분석에 의한 상산의 암전이 억제 효과 (Systems Pharmacological Analysis of Dichroae Radix in Anti-Tumor Metastasis Activity)

  • 이지예;신아연;김학군;안원근
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.295-313
    • /
    • 2023
  • Objectives : While treatments for cancer are advancing, the development of effective treatments for cancer metastasis, the main cause of cancer patient death, remains insufficient. Recent studies on Dichroae Radix have revealed that its active ingredients have the potential to inhibit cancer metastasis. This study aimed to investigate the cancer metastasis inhibitory effect of Dichroae Radix using network pharmacological analysis. Methods : The active compounds of Dichroae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : In total, 25 active compounds and their 62 non-redundant targets were selected through the TCMSP database and analysis platform. The target genes underwent gene ontology and pathway enrichment analysis. The gene list applied to the gene ontology analysis revealed associations with various biological processes, including signal transduction, chemical synaptic transmission, G-protein-coupled receptor signaling pathways, response to xenobiotic stimulus, and response to drugs, among others. A total of eleven genes, including HSP90AB1, CALM1, F2, AR, PAKACA, PTGS2, NOS2, RXRA, ESR1, ESR2, and NCOA1, were found to be associated with biological pathways related to cancer metastasis. Furthermore, nineteen of the active compounds from Dichroae Radix were confirmed to interact with these genes. Conclusions : The results provide valuable insights into the mechanism of action and molecular targets of Dichroae Radix. Notably, Berberine, the main active ingredient of Dichroae Radix, plays a significant role in degrading AR proteins in advanced prostate cancer. Further studies and validations can provide crucial data to advance cancer metastasis prevention and treatment strategies.

Ginsentology II: Chemical Structure-Biological Activity Relationship of Ginsenoside

  • Lee, Byung-Hwan;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제31권2호
    • /
    • pp.69-73
    • /
    • 2007
  • Since chemical structures of ginsenoside as active ingredient of Panax ginseng are known, accumulating evidence have shown that ginsenoside is one of bio-active ligands through the diverse physiological and pharmacological evaluations. Chemical structures of ginsenoside could be divided into three parts depending on diol or triol ginsenoside: Steroid- or cholesterol-like backbone structure, carbohydrate portions, which are attached at the carbon-3, -6 or -20, and aliphatic side chain coupled to the backbone structure at the carbon-20. Ginsenosides also exist as stereoisomer at the carbon-20. Bioactive ligands usually exhibit the their structure-function relationships. In ginsenosides, there is little known about the relationship of chemical structure and biological activity. Recent reports have shown that ginsenoside $Rg_3$, one of active ginsenosides, exhibits its differential physiological or pharmacological actions depending on its chemical structure. This review will show how ginsenoside $Rg_3$, as a model compound, is functionally coupled to voltage-gated ion channel or ligand-gated ion channel regulations in related with its chemical structure.

Pharmacological Activities and Applications of Spicatoside A

  • Ramalingam, Mahesh;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.469-474
    • /
    • 2016
  • Liriopogons (Liriope and Opiopogon) species are used as a main medicinal ingredient in several Asian countries. The Liriopes Radix (tuber, root of Liriope platyphylla) has to be a promising candidate due to their source of phytochemicals. Steroidal saponins and their glycosides, phenolic compounds, secondary metabolites are considered of active constituents in Liriopes Radix. Spicatoside A, a steroidal saponin, could be more efficacious drug candidate in future. In this review, we summarized the available knowledge on phytochemical and pharmacological activities for spicatoside A. It significantly suppressed the level of NF-${\kappa}B$, NO, iNOS, Cox-2, IL-$1{\beta}$, IL-6 and MAPKs in LPS-stimulated inflammation. The production of MUC5AC mucin was increased. MMP-13 expression was down-regulated in IL-$1{\beta}$-treated cells and reduced glycosaminoglycan release from IL-$1{\alpha}$-treated cells. The neurite outgrowth activity, PI3K, Akt, ERK1/2, TrkA and CREB phosphorylation and neurotropic factors such as NGF and BDNF were upregulated with increased latency time. It also showed cell growth inhibitory activity on various carcinoma cells. From this, spicatoside A exerts anti-inflammation, anti-asthma, anti-osteoclastogenesis, neurite outgrowth, memory consolidation and anticancer activities. Further studies are needed on spicatoside A in order to understand mechanisms of action to treat various human diseases.

American Ginseng: Research Developments, Opportunities, and Challenges

  • Punja, Zamir K.
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.368-374
    • /
    • 2011
  • American ginseng (Panax quinquefolius L.) is grown in some regions of the USA and Canada and marketed for its health promoting attributes. While cultivation of this plant species has taken place in North America for over 100 years, there are many challenges that need to be addressed. In this article, the current production method used by growers is described and the challenges and opportunities for research on this valuable plant are discussed. These include studies on pharmacological activity, genetic diversity within the species, genetic improvement of currently grown plants, molecular characterization of gene expression, and management of diseases affecting plant productivity. The current research developments in these areas are reviewed and areas requiring further work are summarized. Additional research should shed light on the nature of the bioactive compounds and their clinical effects, and the molecular basis of active ingredient biosynthesis, and provide more uniform genetic material as well as improved plant growth, and potentially reduce losses due to pathogens.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • 제27권3호
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan;Xie, Rongfang;Zhong, Chenhui;Huang, Jianyong;Shi, Peiying;Yao Hong
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.39-53
    • /
    • 2022
  • Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 지실(枳實)의 잠재적 치료기전 탐색 (Analysis of Potential Active Ingredients and Treatment Mechanism of Ponciri Fructus Immaturus for Dermatitis Accompanied by Pruritus Using Network Pharmacology)

  • 서광일;김준동;김병현;김규석;남혜정;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제35권4호
    • /
    • pp.75-94
    • /
    • 2022
  • Objectives : To identify the active ingredient of Poncirus Trifoliata Immaturus and to explore the mechanism expected to potentially act on dermatitis accompanied by pruritus. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of Poinciri Fructus Immaturus. We found the target protein of the selected active ingredient, disease(dermatitis accompanied by pruritus) and fexofenadine. Then we established the network between the proteins which Poinciri Fructus Immaturus and fexofenadine intersected with disease respectively, and the coregene was also extracted. After that, the active pathways in the human body involving the groups and coregenes were searched. Results : Total of 7 active ingredients were selected, and 202 target proteins were collected. There were 756 proteins related to inflammatory skin disease accompanied by pruritus, and 75 proteins were related to fexofenadine. 42 proteins crossed by Poinciri Fructus Immaturus with a disease, and 31 proteins crossed by fexofenadine with a disease. 12 proteins were found as a coregene from the proteins that cross Poinciri Fructus Immaturus and disease. Coregenes are involved in 'Nitric-oxide synthase regulator activity', 'Epidermal growth factor receptor signaling pathway'. 2 groups that extracted are invloved in 'Fc receptor signaling pathway', 'Central carbon metabolism in cancer', 'Phosphatidylinositol 3-kinase complex, class IB', and 'omega-hydroxylase P450 pathway'. Conclusion : It is expected that Poinciri Fructus Immaturus will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied by pruritus in the future. And it is also expected to have a synergy effect with fexofenadine on skin disease.

Network pharmacology prediction to discover the potential pharmacological action mechanism of Rhizoma Dioscoreae for liver regeneration

  • Wei Liu;Wenyu Wang;Chenglong Tian;Ming-Zhong Sun;Shuqing Liu;Qinlong Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권5호
    • /
    • pp.479-491
    • /
    • 2024
  • Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.

Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner

  • Wijerathne, Tharaka Darshana;Kim, Ji Hyun;Kim, Min Ji;Kim, Chul Young;Chae, Mee Ree;Lee, Sung Won;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.381-392
    • /
    • 2019
  • Sperm function and male fertility are closely related to pH dependent $K^+$ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.

Franz Diffusion Cell을 이용한 인진호 함유 경피제의 피부투과 특성 연구 (Permeation Characteristics of Transdermal Preparations Containing Artemisiae Capillaris Herba in Franz Diffusion Cell)

  • 김은남;박교현;김배환;정길생
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.165-171
    • /
    • 2018
  • Artemisiae Capillaris Herba is a dried aerial part of Asteraceae capillaris Thunb.(Compositae), which has been used in Korean traditional medicine for the treatment of various diseases. It has a variety of pharmacological activities and has been evaluated for potential as an active ingredient in cosmeceutical products. In the cosmetics industry, animal experiments is besides the major concern of ethics, there are few more disadvantages of animal experimentation like demand of skilled manpower, time consuming protocols and high cost. Therefore, various alternatives to animal experiments have been proposed. The purpose of this study was to investigate the skin permeation characteristics of chlorogenic acid and dimethyleculetin, which are constituent of Artemisiae Capillaris Herba by using Franz diffusion cell. As a result, skin permeability was characterized by flux(penetration rates) and $K_p$(permeability coefficient) value, chlorogenic acid had lower flux and $K_p$ than dimethylesculetin. According to the definitions of Marzulli, chlorogenic acid and dimethylesculetin would be classified as 'Moderate' and 'Very fast' respectively. In conclusion, skin permeation characteristics of chlorogenic acid and dimethylesculetin were confirmed through Franz diffusion cell, and suggests the direction of alternative method for skin permeation of natural compounds.