• Title/Summary/Keyword: Pharmaceutical biotechnology

Search Result 1,421, Processing Time 0.023 seconds

An Efficient Markerless Deletion System Suitable for the Industrial Strains of Streptomyces

  • Dong, Jianxin;Wei, Jiaxiu;Li, Han;Zhao, Shiyao;Guan, Wenjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1722-1731
    • /
    • 2021
  • The genus Streptomyces is intensively studied due to its excellent ability to produce secondary metabolites with diverse bioactivities. In particular, adequate precursors of secondary metabolites as well as sophisticated post modification systems make some high-yield industrial strains of Streptomyces the promising chassis for the heterologous production of natural products. However, lack of efficient genetic tools for the manipulation of industrial strains, especially the episomal vector independent tools suitable for large DNA fragment deletion, makes it difficult to remold the metabolic pathways and streamline the genomes in these strains. In this respect, we developed an efficient deletion system independent of the episomal vector for large DNA fragment deletion. Based on this system, four large segments of DNA, ranging in length from 10 kb to 200 kb, were knocked out successfully from three industrial Streptomyces strains without any marker left. Notably, compared to the classical deletion system used in Streptomyces, this deletion system takes about 25% less time in our cases. This work provides a very effective tool for further genetic engineering of the industrial Streptomyces.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Expression and Purification of Intact and Functional Soybean (Glycine max) Seed Ferritin Complex in Escherichia coli

  • Dong, Xiangbai;Tang, Bo;Li, Jie;Xu, Qian;Fang, Shentong;Hua, Zichun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.299-307
    • /
    • 2008
  • Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by $Ni^{2+}$ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.

STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells

  • Dong, Guanjun;You, Ming;Ding, Liang;Fan, Hongye;Liu, Fei;Ren, Deshan;Hou, Yayi
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.441-451
    • /
    • 2015
  • Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

Effect of G009 on Lipid Peroxidation Induced by Peroxidizer in Rats (G009가 Peroxidizers에 의해 유발된 지질 과산화에 미치는 영향)

  • Lee, June-Woo;Jeong, Hoon;Lee, Seung-Mok;Kim, Ki-Nam;Han, Man-Douk;Lee, Seung-Yong;Kim, Su-Ung;Kang, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.244-250
    • /
    • 1996
  • In this study, the anti-lipidperoxidative effects of G009, a polysaccharide extracted from Ganoderma lucidum IY009, was determined in ascorbic acid-$Fe^{2+}$-adenosine 5-diphosphate-intoxicated rat. In a model of ascorbic acid-Fe$^{2+}$-adenosine 5-diphosphate-induced hepatotoxicity in rat, G009 exhibited anti-lipidperoxidative effect in rat liver homogenate, and that malondialdehyde values of the liver homogenate inhibited from 48.1% to 74.8% in comparison to controls (p<0.05). The malondialdehyde formation in serum inhibited 66.5% at 100 mg/kg of G009. Also, serum levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in peroxidizer-induced rats treated with G009 was decreased compared with control. Especially, the formation of lipid peroxides in serum was related to glutamic pyruvic transaminase levels. These results suggest that G009 has a protective effect on ascorbic acid-$Fe^{2+}$-adenosine 5-diphosphate-induced hepatic injury through an inhibition of lipid peroxidation in liver.r.

  • PDF

Isolation of $NH_4^+$-Tolerant Mutants of Actinobacillus succinogenes for Succinic Acid Production by Continuous Selection

  • Ye, Gui-Zi;Jiang, Min;Li, Jian;Chen, Ke-Quan;Xi, Yong-Lan;Liu, Shu-Wen;Wei, Ping;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1219-1225
    • /
    • 2010
  • Actinobacillus succinogenes, a representative succinicacid-producing microorganism, is seriously inhibited by ammonium ions, thereby hampering the industrial use of A. succinogenes with ammonium-ion-based materials as the pH controller. Therefore, this study isolated an ammonium-ion-tolerant mutant of A. succinogenes using a continuous-culture technique in which all the environmental factors, besides the stress (ammonium ions), were kept constant. Instead of operating the mutant-generating system as a nutrient-limited chemostat, it was used as a nutrient-unlimited system, allowing the cells to be continuously cultured at the maximum specific growth rate. The mutants were isolated on agar plates containing the acid-base indicator bromothymol blue and a high level of ammonium ions that would normally kill the parent strain by 100%. When cultured in anaerobic bottles with an ammonium ion concentration of 354 mmol/l, the mutant YZ0819 produced 40.21 g/l of succinic acid with a yield of 80.4%, whereas the parent strain NJ113 was unable to grow. When using $NH_4OH$ to buffer the culture pH in a 3.0 l stirredbioreactor, YZ0819 produced 35.15 g/l of succinic acid with a yield of 70.3%, which was 155% higher than that produced by NJ113. In addition, the morphology of YZ0819 changed in the fermentation broth, as the cells were aggregated from the beginning to the end of the fermentation. Therefore, these results indicate that YZ0819 can efficiently produce succinic acid when using $NH_4OH$ as the pH controller, and the formation of aggregates can be useful for transferring the cells from a cultivation medium for various industrial applications.

Correlation between Anticomplementary and Antitumor Activity of the Crude Polysaccaride from Ganoderma Iucidum IY009 (Ganoderma lucidum IY 009조다당 분획들의 항암활성과 항보체활성간의 상호관계)

  • Lee, Kweon-Haeng;Lee, June-Woo;Han, Man-Deuk;Jeong, Hoon;Kim, Young-Il;Oh, Doo-Whan
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.45-51
    • /
    • 1994
  • Antitumor polysaccharides were known to activate complement system and to increase specific serum proteins in mouse, and researcher reported that antitumor activity of polyasccharides might be correlated with their biological properties such as activation of complement system and increase of specific protein $L_{A}$, $L_{B}$ and $L_{C}$ within the mouse serum. In case of several Ganoderma lucidum, there was no correlation between their antitumor activities and their bioloical properties, but the antitumor activities against sarcoma 180 of the alkali extracted crude polysaccharide fractions of the Ganoderma lucidum IY 009. AS, T, AI and M were correlated with their bioloical properties such as anticomplementary activity and intensity of mouse serum protein $L_{A}$, $L_{B}$ and $L_{C}$.

  • PDF