• Title/Summary/Keyword: Pharmaceutical biotechnology

Search Result 1,415, Processing Time 0.026 seconds

Technology Licensing Agreements from an Organizational Learning Perspective

  • Lee, JongKuk;Song, Sangyoung
    • Asia Marketing Journal
    • /
    • v.15 no.3
    • /
    • pp.79-95
    • /
    • 2013
  • New product innovation is a process of embodying new knowledge in a product and technology licensing is getting popular as a means to innovations and introduction of new product to the market in today's competitive global market environment. Incumbents often rely on technology licensing to access new product opportunities created by other firms. Prior research has examined various aspects of technology licensing agreements such as specific contract terms of licensing agreements, e.g., distribution of control rights, exclusivity of licensing agreements, cross-licensing, and the scope of licensing agreements. This study aims to provide answers to an important, but under-researched question: why do some incumbents initiate more licensing agreement for exploratory learning while others do it for exploitative learning along the innovation process? We attempt to extend our knowledge of licensing agreements from an organizational learning perspective. Technology licensing as a specific form of interfirm linkages can be initiated with different learning objectives along the process of new product innovation. The exploratory stages of the innovation process such as discovery or research stages involve extensive searches to create new knowledge or capabilities, whereas the exploitative stages of the innovation process such as application or test stages near the commercialization are more focused on developing specific applications or improving their efficiency or reliability. Thus, different stages of the innovation process generate different types of learning and the resulting technological resources. We examine when incumbents as licensees initiate more licensing agreements for exploratory learning objectives and when more for exploitative learning objectives, focusing on two factors that may influence a firm's formation of exploratory and exploitative licensing agreements: 1) its past radical and incremental innovation experience and 2) its internal investments in R&D and marketing. We develop and test our hypotheses regarding the relationship between a firm's radical and incremental new product experience, R&D investment intensity and marketing investment intensity, and the likelihood of engaging in exploratory and exploitive licensing agreements. Using data collected from various secondary sources (Recap database, Compustat database, and FDA website), we analyzed technology licensing agreements initiated in the biotechnology and pharmaceutical industries from 1988 to 2011. The results of this study show that incumbents initiate exploratory rather than exploitative licensing agreements when they have more radical innovation experience and when they invest in R&D activities more intensively; in contrast, they initiate exploitative rather than exploratory licensing agreements when they have more incremental innovation experience and when they invest in marketing activities more intensively. The findings of this study contribute to the licensing and interfirm cooperation studies. First, this study lays a foundation to understand the organizational learning aspect of technology licensing agreements. Second, this study sheds lights on how a firm's internal investments in R&D and marketing are linked to its tendency to initiate licensing agreements along the innovation process. Finally, the findings of this study provide important insight to managers regarding which technologies to gain via licensing agreements. This study suggests that firms need to consider their internal investments in R&D and marketing as well as their past innovation experiences when they initiate licensing agreements along the process of new product innovation.

  • PDF

Characterization of Photobacterium sp. YW2207 isolated from rainbow trout (Oncorhynchus mykiss) raised in a fresh water farm in South Korea (국내 양식 무지개송어(Oncorhynchus mykiss)에서 분리된 Photobacterium sp. YW2207의 특성)

  • Hyunwoo Kim;Eunsup Lee;Sung Jun Lee;Haneul Kim;So-Ra Han;Tae-Jin Oh;Myoung Sug Kim;Soo-Jin Kim;Se Ryun Kwon
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.251-261
    • /
    • 2023
  • Photobacterium sp. YW2207 was isolated from rainbow trout raised in a fish farm located in Yeongwol-gun, Gangwon Province, South Korea. Based on 16S rRNA sequence analysis and phylogenetic analysis, it was confirmed that Photobacterium sp. YW2207 showed 100% similarity with Photobacterium piscicola and Photobacterium phosphoreum, and 94.6% similarity with P. damselae subsp. damselae. Biochemical analysis revealed that Photobacterium sp. YW2207 is a Gram-negative, motile bacterium with a cell size of 1.5~3×3~5 ㎛. The bacteria were cultured on nutrient agar, brain heart infusion agar, Muller-Hinton agar, tryptic soy agar, and thiosulfate citrate bile sucrose agar with NaCl concentrations ranging from 0 to 2.5%. The API50CHE and API20E tests indicated lower utilization capabilities compared to the P. damselae strains provided in the API database. Furthermore, unlike most Photobacterium species, Photobacterium sp. YW2207 presented negative for catalase test. Results from the flow cytometric measurement indicated that Photobacterium sp. YW2207 exhibited a more diverse distribution of cell sizes and had larger cell sizes compared with P. damselae subsp. damselae. Minimum inhibitory concentration tests showed that Photobacterium sp. YW2207 had low susceptibility to β-Lactam and aminoglycoside antibiotics, while having high susceptibility to tetracycline, doxycycline, and quinolone antibiotics. Pathogenicity on rainbow trout revealed that an immersion of 1×105 CFU/ml did not cause mortality or clinical symptoms.

Expression of tissue-type plasminogen activator and its derivative proteins in transgenic alfalfa plants (조직형 플라스미노겐 액티베이터와 관련 변이 단백질들을 발현하는 알팔파 형질전환체)

  • Sim, Joon-Soo;Rhee, Yong;Ko, Hyo-Rim;Pak, Hyo-Kyung;Kim, Hyeong-Mi;Lim, Kyu-Hee;An, Ki-Seong;Kim, Yong-Hwan;Hahn, Bum-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Tissue-type plasminogen activator (t-PA) is a thrombolytic agent important in fibirn clot lysis. T-PA causes fibirn-specific plasminogen activation. Six binary vectors harboring t-PA and its derivative genes were cloned and expressed in transgenic alfalfa plants. The insertion of the t-PA and its derivative genes in genomic DNA of alfalfa plants was confirmed by PCR. The presence of the t-PA and its derivative transcripts in total RNAs of the transgenic alfalfa leaves was verified by RT-PCR. ELISA experiments demonstrated that the highest level of recombinant t-PA expression was $75.1{\mu}g$/ total soluble protein (mg) in alfalfa plants. The amount of recombinant t-PA and its derivative proteins in transgenic plants was estimated to range from 9.7 to $39.5{\mu}g$/ total soluble proteins (mg). Western blot analysis of the transformed alfalfa leaves revealed bands of approximately 68-kDa recombinant t-PA and its derivative proteins. The fibrinolysis of recombinant t-PA and its derivative proteins was confirmed by a fibrin plate assay (range from 3.2 to 8.1 cm). The results presented provide information for the development of an additional production of recombinant human proteins having pharmaceutical applications using transgenic plants.

Effect of Natural Plant Mixtures on Behavioral Profiles and Antioxidants Status in SD Rats (자생식물 혼합 추출물이 SD 흰쥐에서의 행동양상 및 항산화 체계에 미치는 영향)

  • Seo, Bo-Young;Kim, Min-Jung;Kim, Hyun-Su;Park, Hae-Ryong;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1208-1214
    • /
    • 2011
  • Caffeine, a psychoactive stimulant, has been implicated in the modulation of learning and memory functions due to its action as a non-selective adenosine receptors antagonist. On the contrary, some side effects of caffeine have been reported, such as an increased energy loss and metabolic rate, decrease DNA synthesis in the spleen, and increased oxidative damage to exerted on LDL particles. Therefore, the aim of this study was to develop a safe stimulant from natural plants mixture (Aralia elata, Acori graminei Rhizoma, Chrysanthemum, Dandleion, Guarana, Shepherd's purse) that can be used as a substitute for caffeine. Thirty SD rats were divided into three groups; control group, caffeine group (15.0 mg/kg, i.p.), and natural plants mixture group (NP, 1 mL/kg, p.o.). The effect of NP extract on stimulant activity was evaluated with open-field test (OFT) and plus maze test for measurement of behavioral profiles. Plasma lipid profiles, lipid peroxidation in LDL (conjugated dienes), total antioxidant capacity (TRAP) and DNA damage in white blood, liver, and brain cells were measured. In the OFT, immobility time was increased significantly by acute (once) and chronic (3 weeks) supplementation of NP and showed a similar effect to caffeine treatment. Three weeks of caffeine treatment caused plasma lipid peroxidation and DNA damage in liver cells, whereas there were no changes in the NP group. NP group showed a higher plasma HDL cholesterol concentration compared to the caffeine group. The results indicate that the natural plants mixture had a stimulant effect without inducing oxidative stress.

Variation in bioactive principles and bioactive compounds of Rosa rugosa fruit during ripening (해당화 열매 성숙단계에 따른 생리활성 및 기능성 물질 변화 분석)

  • Kwak, Minjeong;Eom, Seung Hee;Gil, Jinsu;Kim, Ju-Sung;Hyun, Tae Kyung
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.236-245
    • /
    • 2019
  • Fruit ripening is a genetically programmed process involving a number of biochemical and physiological processes assisted by variations in gene expression and enzyme activities. This process generally affects the phytochemical profile and the bioactive principles in fruits and vegetables. To appraise the variation in bioactive principles of fruits from Rosa rugosa during its ripening process, we analyzed the changes in antioxidant and anti-elastase activities and polyphenolic compounds during the four ripening stages of fruits. Overall, an extract of unripe fruits contained the highest levels of total phenolic and flavonoid contents, radical scavenging activity, reducing power, oxygen radical antioxidant capacity, and elastase inhibitory activity, compared with the extracts of fruits at other stages of ripening. Additionally, we found that the reduction of flavonoid content occurs because of decreased transcriptional levels of genes involved in flavonoid biosynthesis pathway during the ripening process. Based on HPLC analysis, we found that the extract of unripe fruits contained the highest amount of myricetin, caffeic acid, chlorogenic acid, syringic acid, and p-coumaric acid and suggested that the antioxidant and anti-elastase activities of the extract obtained from stage 1, should be mediated by the presence of these compounds. Additionally, we analyzed the interaction sites and patterns between these compounds and elastase using the structure-based molecular docking approach, and suggested that chlorogenic acid strongly interacted with elastase. Together, these findings suggest that the maturity of fruits has profound effects on the pharmaceutical value of R. rugosa.

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock (토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구)

  • Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.460-467
    • /
    • 2016
  • A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.

DEU-7 Derived from Ulmus macrocarpa Improved Immune Functions in Cyclophosphamide-treated Mice (면역억제 마우스 모델에서 왕느릅나무 유래 DEU-7의 면역기능 증강)

  • Kang, Kyung-Hwa;Go, Ji Su;Lee, Inhwan;Lee, Sang Ho;Lee, Sung Do;Kim, Deok Won;Lee, Jong-Hwan;Hwang, HyeJin;Hyun, Sook Kyung;KIM, Byoung Woo;Kim, Chul Min;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1156-1163
    • /
    • 2015
  • The present study investigated the immunomodulatory properties of four different medicinal plants in a cyclophosphamide-treated Balb/c mouse model. One of the four plants, Ulmus macrocarpa, showed partial resistance against immune suppression induced by cyclophosphamide. The bark of U. macrocarpa, commonly known as the Chinese elm, has been used as a pharmaceutical material in Korean traditional medicine to treat bacterial inflammation and induce wound healing. In this study, water extract of U. macrocarpa, named DEU-7, was used for its immunomodulating functional activity. DEU-7 increased the weight of the spleen and the number of splenocytes but did not significantly affect the liver, kidney, and thymus in vivo. A splenocyte viability assay confirmed that DEU-7 influenced ex vivo splenocyte survival. DEU-7 also increased the levels of cytokines, such as IL-2 and IL-4, and immunoglobulins, such as IgM, IgG, and IgA. These results indicated that DEU-7 is involved in the activation of T and B lymphocytes. In addition, DEU-7 was able to maintain the production of cytokines, such as TNF-α, IL-12, and IFN-γ, in the condition of cyclophosphamide-induced immune suppression, suggesting that DEU-7 activated innate immune cells, even under immune suppression. We concluded that DEU-7 aids immunological homeostasis, thereby preventing immune suppression, and aids both innate and adaptive immune response by maintaining the levels of various cytokines and immunoglobulins. Consequently, it is worth investigating the potential of DEU-7 as a supplemental source for immune-enhancing agents.

Neuroprotective effects of cultured and fermented wild ginseng extracts on oxidative stress induced by hydrogen peroxide in PC12 cells (발효산삼배양근농축액의 산화방지 효과 및 과산화수소로 유발된 PC12 세포독성 보호효과)

  • Choi, Yeo Ok;Kim, Yu-Ri;Shin, Seung-Yong;Lee, Jae Geun;Kim, Chul Joong;Lee, Ye ji;Kang, Byeongju;Kim, Gwansu;Choi, Jee Eun;Han, Beom-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.383-390
    • /
    • 2018
  • Most neurodegenerative diseases are known to be influenced by oxidative stress. We investigated the anti-oxidative activity of the concentrate of fermented wild ginseng root culture (HLJG0701) containing ginsenosides Rg5 and Rk1. HLJG0701 showed effective DPPH and ABTS radical scavenging ability ($IC_{50}$: 16- and 4-fold dilution, respectively) and was inhibited dose-dependently by the $FeSO_4$-induced lipid peroxidation group (8- and 4-fold dilution: 2.3 and 1.5 nM, respectively). In MTT and LDH assays, 8-, 16-, 32- and 64-fold diluted HLJG0701 significantly increased cell viability by 70, 53, 35, and 26%, respectively. LDH released by HLJG0701 was reduced 1.3-fold with 8-fold diluted HLJG0701 compared to the $H_2O_2$-treated control. In addition, the inhibitory effect of HLJG0701 on oxidative stress in PC12 cells was confirmed by DCF-DA analysis (16-, 4-fold diluted HLJG0701: 50 and 68% ROS inhibition, respectively), TBARS (16- and 4-fold diluted HLJG0701: 50.7 and 46.5% inhibition, respectively), GPx (16- and 4-fold diluted HLJG0701: 133.3 and 227.3% release, respectively), and SOD analysis (16- and 4-fold diluted HLJG0701: 118.2 and 218.2% release, respectively). These results suggested that HLJG0701 protects neuronal cells by its anti-oxidative effects and hence can be a potential preventive material against neurodegenerative diseases.

Fulvestrant Does Not Have Antagonistic Effect on 17β-estradiol's Anti-proliferative Action in Cultured Chinese Hamster Ovarian Cell Line (17β-Estradiol의 CHO 세포 항 증식작용에 대한 fulvestrant의 효과)

  • Kim, Hyun Hee;Park, Hyeong Cheol;Min, Gyesik
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • Estrogen can promote or inhibit cellular proliferation depending on tissue cell types and physiological condition and acts through the signal transduction pathways mediated primarily by estrogen receptors. This study examined the effects of fulvestrant (Ful), a well-known antagonist for the estrogen receptor, on the action of $17{\beta}$-estradiol (E2) with respect to the proliferation and apoptosis of Chinese hamster ovarian (CHO) cells. We used different concentrations of E2, Ful, and E2 plus Ful during different treatment durations. Treatment with 15-40 ${\mu}M$ E2 significantly inhibited proliferation in a time-dependent manner, although it had no influence in concentrations up to 1 ${\mu}M$. Interestingly, Ful at 10-40 ${\mu}M$ also inhibited cellular proliferation in both a concentration- and time-dependent manner. In addition, Ful enhanced rather than decreased the inhibitory effect on cellular proliferation by E2 in combined treatment for 10 days. Thus, Ful does not appear to have an antagonistic effect on estrogen's anti-proliferative action in CHO cells. In TUNEL assays to confirm DNA fragmentation by E2 and/or Ful, CHO cells treated with 20 ${\mu}M$ E2 showed a TUNEL-positive reaction in most DAPI-stained nuclei, and cells treated with either 40 ${\mu}M$ Ful or 40 ${\mu}M$ Ful plus 20 ${\mu}M$ E2 also exhibited a TUNEL-positive reaction but at a lower rate compared to the E2-treated cells. These results indicate that Ful does not have an antagonistic effect on estrogen's anti-proliferative action in CHO cells, suggesting that the anti-proliferative and apoptosis-related mechanism(s) through DNA fragmentation by E2 and Ful may be mediated by different signal transduction pathways.

Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids (적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구)

  • Lee, Seung Joon;Kim, Hyoung-Kab;Lee, Hyang Burm;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1313-1319
    • /
    • 2016
  • Cancer is a complex disease heterogeneously composed of various types of cells including cancer stem-like cells responsible for relapse and chemoresistance in the tumor microenvironment. The conventional two-dimensional cell culture-based platform has critical limitations for representing the heterogeneity of cancer cells in the three-dimensional tumor niche in vivo. To overcome this insufficiency, three-dimensional cell culture methods in a scaffold-dependent or -free physical environment have been developed. In this study, we improved and simplified the HCT-8 colon cancer cell-based spheroid culture protocol and evaluated the relationship between cancer stemness and responses of chemosensitivity to 5- Fluorouracil (5-FU), a representative anticancer agent against colon cancer. Supplementation with defined growth factors in the medium and the culture dish of the regular surface with low attachment were required for the formation of constant-sized spheroids containing $CD44^+$ and $CD133^+$ colon cancer stem cells. The chemo-sensitivities of $CD44^+$ cancer stem cells in the spheroids were much lower than those of $CD44^-$ non-stem-like cancer cells, indicating that the chemoresistance to 5-FU is due to the stemness of colon cancer cells. Taken together, the inflammation and oncogenic gut environment-sensitive HCT-8 cell-based colon cancer spheroid culture and comparative evaluation using the simplified model would be an efficient and applicable way to estimate colon cancer stemness and pharmaceutical response to anticancer drugs in the realistic tumor niche.