• Title/Summary/Keyword: Petronas

Search Result 59, Processing Time 0.024 seconds

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Mohamad, Hisham;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

Fatigue performance of deepwater steel catenary riser considering nonlinear soil

  • Kim, Y.T.;Kim, D.K.;Choi, H.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • The touch down zone (TDZ) and top connection point of the vessel are most critical part of fatigue damage in the steel catenary riser (SCR). In general, the linear soil model has been used to evaluate fatigue performance of SCRs because it gives conservative results in the TDZ. However, the conservative linear soil model shows the limitation to accommodate real behavior in the TDZ as water depth is increased. Therefore, the riser behavior on soft clay seabed is investigated using a nonlinear soil model through time domain approach in this study. The numerical analysis considering various important parameters of the nonlinear soil model such as shear strength at mudline, shear strength gradient and suction resistance force is conducted to check the adoptability and applicability of nonlinear soil model for SCR design.

The Cost Monitoring of Construction Projects through Earned Value Analysis

  • Waris, Muhammad;Khamidi, Mohd Faris;Idrus, Arazi
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.4
    • /
    • pp.42-45
    • /
    • 2012
  • In construction industry, the term 'procurement' is considered as a project based job where clients and contractors are always keen to observe performance indicators. These indicators represent financial and non-financial efficiency of project activities. Among these, the monitoring of financial indicators such as cost monitoring is an ongoing process and its importance cannot be undermined during the project life cycle. It can be monitored by using traditional approach of direct reporting of actual cost against budget. However, the comparison of budget versus actual spending does not indicate the worth of the work which is completed at any given time. This approach does not represent the true cost performance of the project. Because of these limitations, this paper discusses the applications of Earned Value Analysis (EVA) for cost monitoring of construction projects in Malaysia. Besides traditional approach, EVA is a three-dimensional approach that compares three cost indicators i.e. the budgeted value of work scheduled with the earned value of physical work completed and the actual cost of work completed. Therefore, cost monitoring by EVA is an objective measure of actual work performed. This paper uses a case study, an example application of EVA as a cost monitoring tool. This case study reaffirms the benefits of using EVA for project cash flow analysis and forecasting.

Trustworthy Mutual Attestation Protocol for Local True Single Sign-On System: Proof of Concept and Performance Evaluation

  • Khattak, Zubair Ahmad;Manan, Jamalul-Lail Ab;Sulaiman, Suziah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2405-2423
    • /
    • 2012
  • In a traditional Single Sign-On (SSO) scheme, the user and the Service Providers (SPs) have given their trust to the Identity Provider (IdP) or Authentication Service Provider (ASP) for the authentication and correct assertion. However, we still need a better solution for the local/native true SSO to gain user confidence, whereby the trusted entity must play the role of the ASP between distinct SPs. This technical gap has been filled by Trusted Computing (TC), where the remote attestation approach introduced by the Trusted Computing Group (TCG) is to attest whether the remote platform integrity is indeed trusted or not. In this paper, we demonstrate a Trustworthy Mutual Attestation (TMutualA) protocol as a proof of concept implementation for a local true SSO using the Integrity Measurement Architecture (IMA) with the Trusted Platform Module (TPM). In our proposed protocol, firstly, the user and SP platform integrity are checked (i.e., hardware and software integrity state verification) before allowing access to a protected resource sited at the SP and releasing a user authentication token to the SP. We evaluated the performance of the proposed TMutualA protocol, in particular, the client and server attestation time and the round trip of the mutual attestation time.

Advanced procedure for estimation of pipeline embedment on soft clay seabed

  • Yu, S.Y.;Choi, H.S.;Park, K.S.;Kim, Y.T.;Kim, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • In the present study, the advanced procedure has been proposed to estimate higher accuracy of embedment of pipes that are installed on soft clay seabed. Numerical simulation by OrcaFlex simulation code was performed to investigate dynamic seabed embedment, and two steps, i.e., static and dynamic analysis, were adopted. In total, four empirical curves were developed to estimate the seabed embedment including dynamic phenomena, i.e., behaviour of vessel, environmental condition, and behaviour of nonlinear soil. The obtained results were compared with existing methods (named general method) such as design code or guideline to examine the difference of seabed embedment for existing and advance methods. Once this process was carried out for each case, a diagram for estimating seabed embedment was established. The applicability of the proposed method was verified through applied examples with field survey data. This method will be very useful in predicting seabed embedment on soft clay, and the structural behaviours of installed subsea pipelines can be changed by the obtained seabed embedment in association with on-bottom stability, free span, and many others.

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.127-139
    • /
    • 2019
  • Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.