• Title/Summary/Keyword: Petroleum hydrocarbon

Search Result 263, Processing Time 0.02 seconds

Effects of Initial Concentration and Nutrients in Treatment of petroleum Hydrocarbon Contaminated Soils using a Slurry-Phase Bioreactor (슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 초기농도 및 영양소의 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • The purpose of this study was to evaluate effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils. The reactor used in this study was slurry-phase bioreactor of in-vessel type. Performance results on treatment of diesel fuel contaminated soils and micorbial growth were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) and the microbial growth were evaluated in combination with biodegradation rate. Effect of initial loading levels of 50,000 and 100,000mg TPH/kg soil was studied. Performance results with two reactors were showed at the total TPH removal rate of 90.5% and 90.8%, respectively. However, the reactor with the initial concentration of 50,000mg TPH/kg soil showed higher biological TPH removal efficiency except for removal by volatilization than the other Although the different amount of nutrients was applied in two reactors, there was no remarkable difference in microbial growth rate. However, considerable factor in this results was that applied different initial concentration to two reactors. Although initial concentration was two times higher than it applied to the reactor without addition of nutrients, in total and biological TPH removal rate the reactor with addition of nutrients showed a higher than the other.

  • PDF

Effects of Compost Amendment on Petroleum Hydrocarbon Removal and ATP Concentration in Bioremediation of Diesel Contaminated Soil (디젤오염토앙의 생물학적 복원에 있어서 유기질비료의 첨가가 석유계 탄화수소의 분해 및 ATP 변화에 미치는 영향)

  • Lee, Joo-Heon;Jun, Kwan-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.721-730
    • /
    • 2006
  • The effects of compost amendment on the removal of petroleum hydrocarbons and the activities of microorganisms in soil ecosystem have been studied in bioremediation of diesel contaminated soil. The relation between biological activities and removal of petroleun hydrocarbon was determined by ATP(Adenisine Triphosphate), n-alkanes and TPH concentration analysis. After 80 days of bioremediation, the removal of TPH in soil amended with compost increased more than 10% compared with control soil which was tilled in the same condition without compost addition. The biodegradations of n-alkanes having 12 to 20 moles of carbon were distinctive. As the soil was contaminated with more diesel, the ATP has decreased rapidly. When the TPH amounted to 80,000 mg diesel/kg, the ATP decreased to 4 ng/g from initial concentration of 65 ng/g. While the ATP in the compost amended soil increased to 112 ng/g after tilling for 6 days, the ATP in the control increased to merely 36 ng/g after tilling for 14 days. Also while the control soil showed a lag time in ATP increase, the compost amended soil did not show that but showed a rapid ATP increase within a short time. The patterns of changes in ATP concentration were similar to those in daily removals of TPH with time difference of about 7 days.

Effects of Diesel Dose and Soil Texture on Variation in the Concentration of Total Petroleum Hydrocarbon in the Diesel-Contaminated Soil (경유 주입량과 토양 조성에 따른 유류 오염토양 내 TPH 측정 농도 변화 연구)

  • Jeong, Jongshin;Kim, Hakyong;Lee, Sojin;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.69-72
    • /
    • 2015
  • This study investigated the effects of oil dose and soil texture on the analysis results for total petroleum hydrocarbon (TPH) in artificially oil-contaminated soils. The same amount of diesel was mixed with soils having different soil texture, and soil TPH concentrations were then analyzed for comparison. Presence of clay in the soil showed lower soil TPH analysis results than that of sand only. As the clay content was increased in the soil, the lower soil TPH concentration was obtained by incompleteness of solvent extraction. As the organic matter content in soil was increased from 5.2% to 10% (weight basis), a higher concentration of TPH was obtained by TPH analysis. However, at a higher organic content in the soil, 18%, resulted in a lower TPH concentration than those of 5.2% and 10%. Gasoline dose to the soil resulted in a significantly low TPH concentration due to the volatilization of gasoline while soil mixing and analysis. This study results would provide fundamental information either to the expectation of TPH concentration in artificially oil-contaminated soil or to estimation of oil release in the real oil-contaminated site.

Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation. (원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향)

  • 백경화;김희식;이인숙;오희목;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.408-412
    • /
    • 2003
  • The purpose of this study was to evaluate the Influence of oil concentration and inoculum size on petroleum biodegradation in soil by Nocardia sp. H17-1, isolated from oil-contaminated soil. To investigate the effect of initial oil concentration on total petroleum hydrocarbon (TPH) degradation, the soil was artificially contaminated with 10, 50 or 100 g of Arabian light oil per kg of soil, respectively. After 50 days, Nocardia sp. H17-1 degraded 78,94 and 53% of the each initial TPH concentration, respectively. Also, it produced 1.35, 4.21, and 5.91 mmol of $CO_2$ per g of soil, respectively. The degradation rate constant (k) of TPH was decreased in proportion to the initial oil concentrations while $CO_2$ production was increased with the concentration. The growth of Nocardia sp. H17-1 was remarkably inhibited when it was inoculated into soil containing 100 g of oil per kg of soil. To evaluate the effect of the inoculum size, the soil was artificially contaminated with 50 g of Arabian light oil per kg of soil, and inoculated with $3${\times}$10^{6}$ , $5${\times}$10^{7}$ , $2${\times}$10^{8}$ cells per g of soil, respectively. After 50 days, the degradation of TPH was remained with similar in all treatment but degradation rate constant (k) and evolved $CO_2$ was increased with increasing the inoculum size.

Global Trends of Marine Petroleum Exploration Science Information (해저 석유탐사 학술정보 분석)

  • Kil, Sang Cheol;Park, Kwan Soon;Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.673-681
    • /
    • 2014
  • Recently, many countries in the world try to develop alternative energy sources, however, traditional hydrocarbon resources are still occupying most of the energy resources. Exploration demands for high technologies are increasing in the development of limited oil & gas resources field owing to the exhaustion of hydrocarbon resources for access area. Therefore, an effort for the development and the application of new technologies such as azimuth seismic survey, ocean-bottom seismic survey and marine controlled-source electromagnetic survey is necessary as well as an understanding of the existing technologies such as 2D/3D seismic survey. This dissertation is designed with the purpose of introducing marine hydrocarbon exploration technologies and analyzing their internalexternal researches, development and science information. In this study, we analised total 616 dissertations for the marine petroleum exploration released in the Sci-expanded DB of 'web of science' during the 2001~2014 periods.

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Studies on the Petroleum hydrocarbon-utilizing Microorganisms(Part 1) -On the Production of Protein from the Yeast-cell- (석유(탄화수소) 이용미생물에 관한 연구(제 1보) -효모세포에 의한 석유로부터 단백질 생성에 관하여-)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1970
  • To study the productivity of single cell protein from the petroleum hydrocarbon utilizing yeasts, 242 soil samples, such as oil soaked soil of gas stations and garage, coal, farm soil, and sewage, from 135 places in Korea were collected. From these samples 468 yeast strains which utilize petroleum hydrocarbon as a sole organic carbon source were isolated and identified by observing the growth rates. For the identified strains optimum culture conditions were determined and analysis of cell components were performed. 1. 90.8% of petroleum hydrocarbon utilizing yeast strains were found from oil soaked soil and about 10% from coal, farm soil and sewage etc. 2. The yeast strain of the highest cell productivity was isolated from oil soaked soil and was identified as Candida curvata HY-69-19. 3. The optimum culture conditions for the selected yeast strain were found to be pH 5.0, $28^{\circ}C$ and affluent aerated state. 4. Candida curvata HY-69-19 was found to utilize favorably the heavy gas oil fractionated at above $268.9^{\circ}C$ as carbon source and urea as inorganic nitrogen source. 5. The growth curve of this strain on heavy gas oil medium showed that the yeast has a lag phase up to 18 hours and logarithmic growth phase between 24 to 42 hours. Generation time was found to be between 3.8 and 4.5 hours during the logarithmic growth phase. 6. About 300 mg dried cells per heavy gas oil was harvested under the culture conditions of adjusted pH to 5.0 at time intervals of 6 hours for 54 hours and heavy gas oil urea for shaking culture medium. 7. Chemical composition of the yeast cell was found to be 40.25%, 14.81%, 24.32% and 10.63% for crude protein, crude lipid, carbohydrate and ashes, respectively.

  • PDF

Characteristics of the Microbial Community Responding to the Vertical Distribution of TPH Concentrations in the Petroleum-Contaminated Site (유류오염지역 부지 내 TPH 수직 농도 분포에 따른 미생물 생태 특성)

  • Song, Soo Min;Moon, Hee Sun;Han, Ji Yeon;Shin, Jehyun;Jeong, Seung Ho;Jeong, Chan-Duck;Cho, Sunghyen
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.51-63
    • /
    • 2022
  • In this study, the TPH(Total Petroleum Hydrocarbon) contamination and microbial ecological characteristics in petroleum-contaminated site were investigated through the correlation among the vertical TPH contamination distribution of the site, the geochemical characteristics, and the indigenous microbial ecology. The high TPH concentration showed in the vicinity of 3~4 m or less which is thought to be affected by vertical movement due to the impervious clay layer. In addition, the TPH concentration was found to have a positive correlation with Fe2+, TOC concentration, and the number of petroleum-degrading bacteria, and a negative correlation with the microbial community diversity. The microbial community according to the vertical distribution of TPH showed that Proteobacteria and Firmicutes at the phylum level were dominant in this study area as a whole, and they competed with each other. In particular, it was confirmed that the difference in the microbial community was different due to the difference in the degree of vertical TPH contamination. In addition, the genera Acidovorax, Leptolinea, Rugoshibacter, and Smithella appeared dominant in the samples in which TPH was detected, which is considered to be the microorganisms involved in the degradation of TPH in this study area. It is expected that this study can be used as an important data to understand the contamination characteristics and biogeochemical and microbial characteristics of these TPH-contaminated sites.

Chemical Oxidation Treatment of Hydrocarbon-Contaminated Eine Soil by ${H_2}{O_2}$/$Fe^0 System (${H_2}{O_2}$/$Fe^0시스템을 이용한 유류오염 미세토양의 화학적 산화처리)

  • 지원현;김지형;강정우;김성용;장윤영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.13-20
    • /
    • 2001
  • In this Study, application of ${H_2}{O_2}$/$Fe^0 oxidation System (Fenton-like oxidation) for the oxidative treatment of high-level soil contamination with hydrocarbon was suggested. The characteristics of Fenton-like oxidation of diesel-contaminated fine soil was experimentally probed in a batch system varying initial pH, zero valent iron and hydrogen peroxide levels, and initial diesel concentration. Contaminant degradation was identified by total petroleum hydrocarbon(TPH) concentration with gas chromatography. The batch experiments showed that the optimal ${H_2}{O_2}$and $Fe^0 dosage, 10% ${H_2}{O_2}$+ 20% $Fe^0 removed 65% of initial TPH concentration (10,000mg/kg) at a retention time of 24h. And the TPH removal in the ${H_2}{O_2}$/$Fe^0 system effectively proceeded only within a limited pH range of 3-4. The zero valent iron-catalyzed Fenton-like oxidation of diesel-contaminated soil was more competitive to the $FeSO_4-catalyzed system (Fenton oxidation) in removal efficiency and cost especially for the treatment of high level contamination.

  • PDF