• Title/Summary/Keyword: Petroleum contaminated area

Search Result 41, Processing Time 0.033 seconds

The Priority Management Ranking by using the Classification of Vulnerable Areas for the Soil Contamination in Busan Metropolitan City (부산시 토양오염 취약지역 등급화를 이용한 우선관리대상 순위 선정)

  • Jung, Hyunjung;Lee, Minhee;Doe, Jinwoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.1-12
    • /
    • 2015
  • The purpose of this study is to highlight the National Classification System related to cleanup the soil contaminated sites and to provide some guidance to address the priority management rank system before the remediation for Busan metropolitan city. Based on the previous soil investigation data, the quantitative classification of vulnerable areas for soil pollution was performed to successfully manage the contaminated sites in Busan. Ten evaluation factors indicating the high soil pollution possibility were used for the priority management ranking system and 10 point was assigned for each factor which was evenly divided by 10 class intervals. For 16 Gu/Guns in Busan, the score of each evaluation factor was assigned according to the ratio of the area (or the number) between in each Gu (or Gun) and in Busan. Ten scores for each Gu (or Gun) was summed up to prioritize the vulnerable Gu or Guns for soil pollution in Busan. Results will be available to determine the most urgent area to cleanup in each Gu (or Gun) and also to assist the municipal government to design a successful and cost-effective site management strategy in Busan.

Characteristics of the Microbial Community Responding to the Vertical Distribution of TPH Concentrations in the Petroleum-Contaminated Site (유류오염지역 부지 내 TPH 수직 농도 분포에 따른 미생물 생태 특성)

  • Song, Soo Min;Moon, Hee Sun;Han, Ji Yeon;Shin, Jehyun;Jeong, Seung Ho;Jeong, Chan-Duck;Cho, Sunghyen
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.51-63
    • /
    • 2022
  • In this study, the TPH(Total Petroleum Hydrocarbon) contamination and microbial ecological characteristics in petroleum-contaminated site were investigated through the correlation among the vertical TPH contamination distribution of the site, the geochemical characteristics, and the indigenous microbial ecology. The high TPH concentration showed in the vicinity of 3~4 m or less which is thought to be affected by vertical movement due to the impervious clay layer. In addition, the TPH concentration was found to have a positive correlation with Fe2+, TOC concentration, and the number of petroleum-degrading bacteria, and a negative correlation with the microbial community diversity. The microbial community according to the vertical distribution of TPH showed that Proteobacteria and Firmicutes at the phylum level were dominant in this study area as a whole, and they competed with each other. In particular, it was confirmed that the difference in the microbial community was different due to the difference in the degree of vertical TPH contamination. In addition, the genera Acidovorax, Leptolinea, Rugoshibacter, and Smithella appeared dominant in the samples in which TPH was detected, which is considered to be the microorganisms involved in the degradation of TPH in this study area. It is expected that this study can be used as an important data to understand the contamination characteristics and biogeochemical and microbial characteristics of these TPH-contaminated sites.

A Study on Groundwater Quality and Biodegradability at the Petroleum Contaminated Sites of Kangwon and Gyeonggi Provinces, Korea (강원도 및 경기도 소재 유류오염지역의 수질특성, 발현 생분해능과 오염물질 저감속도)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.24-33
    • /
    • 2010
  • This study focused on the groundwater quality, biodegradability and attenuation rate at the petroleum contaminated sites of Kangwon and Gyeonggi Provinces, Korea. For groundwater quality, Kangwon site showed chemical compositions of $Ca-SO_4+Cl$, $Ca-HCO_3$ and $Na+K-HCO_3$ types, while Gyeonggi site showed chemical compositions of $Ca-SO_4$, $Ca-HCO_3$ and $Na-HCO_3$ types. $Na+K-HCO_3$ and $Na-HCO_3$ types were detected only in February. Among many biodegradation processes, the majority was attributed to biodegradation from denitrification in both area. In Kangwon site, biodegradation from denitrification occupied 63.5%, and in Gyeonggi site it was 39.45%. Biodegradation from the most efficient aerobic respiration occupied 7.12% in Kangwon site, while Gyeonggi site in it did 27.29%. Point attenuation rate of BTEX in Gyeonggi site (GW-22) was 0.0182 $day^{-1}$, half life of BTEX was 84 days, and thus 124 days (0.34 year) would be required to clean up this site. Mean of point attenuation rate of TPH in Kangwon site was 0.0088 $day^{-1}$, mean of half life was 257 days, and thus 462 days would be required to clean up the site. Mean of point attenuation rate of TPH in Gyeonggi site was 0.0387 $day^{-1}$, mean of half life was 55 days, and thus remediation time was calculated as 99 days.

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Jurelevicius, Diogo;Korenblum, Elisa;Casella, Renata;Vital, Ronalt Leite;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.862-870
    • /
    • 2010
  • Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

Study on the soil contamination characteristics according to the functions of the returned U.S. military base (반환미군기지 기능별 토양오염특성에 관한 연구)

  • Oh, Chang-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.481-489
    • /
    • 2013
  • There are U.S. troops with a force about 290,000 strong stationed all around the world, approximately 150 countries. Among the troops, USFK has performed principal part with its stationing for 50 years against the military threat of North Korea. However, as a result of an investigation made into environmental contamination of several bases which were restituted from US to ROK by the Land Partnership Plan in the process of relocation of USFK, it was found that the area was contaminated by not only TPH and BTEX caused by diesel fuel and JP-8 but also various heavy metal over the standard level according to the operations of corps. Among these bases, 4 corps, each of which has different duties and function, were chosen to be analyzed for the characteristics and degrees of soil contamination. Fisrt of all, in armored camp the soil was contaminated by TPH and heavy metal (Zn, Ni, Pb) due to the repairing activities of tracked vehicles and shooting exercises. In army aviation camp, the soil was contaminated by TPH, BTEX and heavy metal (Zn, Cd) due to repairing activities of aircrafts. Also, in engineer camp there was contaminated area polluted by TPH and heavy metal (Zn, Pb) caused by open-air storage of various construction materials and TPH, BTEX and heavy metal (Zn, Pb, Cu) contamination of aircraft shooting area in shooting range camp were detected. Managing environment will be more effective when we identify the contaminative characteristics and take necessary measures in advance.

Calculation of Radius of Influence and Evaluation of Applicability of Air Sparging/Soil Vapor Extraction system for the Remediation of Petroleum Contaminated Rail Site (유류로 오염된 철로지역의 지중정화를 위한 영향반경 산정과 공기주입법/토양증기추출법의 적용성 평가)

  • Cho, Chang-Hwan;Park, Joung-Ku;Kim, Yong-Deok;Seo, Chang-Il;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The objectives of this study were to calculate the radius of influence (ROI) of well for an air-sparging (AS)/soil vapor extraction (SVE) system and to evaluate the applicability of the system applied for the remediation of the petroleum contaminated rail site. For air permeability test, three monitoring wells were installed at a location of 1.3 m, 2.3 m, 3.0 m from the extraction well. And the pressure of each monitoring well was measured by extracting air from the extraction well with the pressure and flow of $(-)2,600mmH_2O$ and $1.58m^3/min$. The ROI for an extraction well was calculated as 4.31 m. Air was injected into the injection well with the pressure and flow of $3,500mmH_2O$ and $0.6m^3/min$ to estimate the radius of influence for oxygen transfer. Oxygen concentrations of air from three monitoring wells were measured. The ROI of an injection well for oxygen transfer was calculated as 3.46 m. The 28 extraction wells and 19 injection wells were installed according to the ROI calculated. The AS/SVE system was operated eight hours a day for five months. The rail site was contaminated with the petroleum and concentrations of benzene, toluene, and xylene were over the 'Worrisome Standard' of the 'Soil Environment Conservation Act'. The contaminated area was estimated as $732m^2$ and contaminants were dispersed up to (-)3 m from the ground. During the operation period, soil samples were collected from 5 points and analyzed periodically. With the AS/SVE system operation, concentrations of benzene, toluene, and xylene were decreased from 7.5 mg/kg to 2.0 mg/kg, from 32.0 mg/kg to 23.0 mg/kg, from 35.5 mg/kg to 23.0 mg/kg, respectively. The combined AS/SVE system applied to the rail site contaminated with volatile organic compounds (VOCs) exhibited a high applicability. But the concentration of contaminants in soil were fluctuated due to the heterogeneous of soil condition. Also the effect of the remediation mechanisms was not clearly identified.

유류오염부지내 MTBE 분포 및 이동 특성

  • 고경석;전치완;조춘희;김통권
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.381-384
    • /
    • 2004
  • To know the occurrence and distribution of MTBE in groundwater, the analysis of groundwater around petroleum spill area was executed. The groundwaters of the 4 study sites are severely contaminated with MTBE and has the highest values of 650mg/L. The plume length of MTBE is longer than that of BTEX in D site and it is caused by the high solubility and low sorption capacities of MTBE.

  • PDF

Distribution of Polycyclic Aromatic Hydrocarbon at Kongsfjorden in Spitsbergen, Svalbard Islands (북극 스발바드 군도 스피츠베르겐섬 콩스피요르드에서의 다환 방향족 탄화수소화합물의 분포 특성)

  • Kim, Gi Beom;Ha, Seong Yong;An, In Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.819-826
    • /
    • 2004
  • In order to elucidate the polycyclic aromatic hydrocarbon concentration and its origin in arctic area, four arctic brown algae (Laminaria saccharina, L. digita, Alaria esculenta, Desmarestia aculeata), one marine invertebrate (Echinoidea) and sediments were collected from Kongsfjorden in Spitsbergen from the late July to early August, 2003. In case of macroalgae, the young blade part above growth point and the old stipes and blades beneath growth point were separated and analyzed for polycyclic aromatic hydrocarbons (PAHs) in an attempt to check the mechanism of uptake in macroalgae to accumulate PAH. There was no difference in PAH concentrations between sampling sites (Stations B and C), species, and blades beneath and above growth point. PAH concentrations in all samples collected in this study were relatively higher than those reported in other areas of arctic. Especially, station C, which is known as an unpolluted area, showed 10 times higher PAH concentration (8,765 ng/g) in sediment than station A (694 ng/g) around harbor. In addition high PAH concentration, station C had very higher proportion of methylated PAH to parent PAH in sediment than station A. Source analysis using PAH isomer pair ratios as indicators showed that Kongsfjorden area seemed to be relatively contaminated with PAH derived from direct petroleum input.

Investigation of Soil and Groundwater Contaminated by Gasoline and Lubricants Around a Railroad Station in S City, Korea

  • Lee, Hwan;Lee, Yoonjin
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.529-540
    • /
    • 2012
  • Objective: This research was performed to evaluate the state of oil pollution in an area surrounding a railway station that has over 100 years of business history as a railway station in S City, Korea. The amount of polluted soil was estimated, and the target area for remediation was assessed in this study to restore the oil-polluted area. Methods: To accomplish this aim, five observation wells were installed for the sampling of groundwater, and soil was sampled at 33 points. Electric resistance studies and a trench investigation were undertaken to understand the geological conditions of the site, and the groundwater movement in this area was simulated by MODFLOW. Physiochemical analyses were conducted to determine the quality of the groundwater and the current state of oil pollution influenced by that of the soil. Results: The mean level of total petroleum hydrocarbons (TPHs) in this area was 1,059 mg/kg, and the area for remediation was determined to be 7,610 mg/kg. Levels of benzene, toluene, ethylbenzene, and xylene (BTEX) were determined to be under the legal standard. Conclusion: In terms of depth, the biggest area polluted by TPH found was between 0 and 1 m from ground level, and the affected area was 5,900 $m^3$. TPHs were not detected in groundwater. Diesel and lubricating oil were the main causes of TPH pollution at this railway station.