• Title/Summary/Keyword: Petasites japonicas

Search Result 6, Processing Time 0.023 seconds

Effect of Freeze-Drying and Hot Air-Convection Drying on the Antioxidative Activity of Butterbur (Petasites japonicus)

  • Cheong, Sun-Hee;Kim, Mi-Yeon;Son, Chan-Wok;Kim, Min-Hee;Lee, Yun-Jin;Kim, Mee-Ree
    • Food Quality and Culture
    • /
    • v.2 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • The principal objective of this study was to assess the anti oxidative activities of Petasites japonicus against oxidative stress in bovine brain tissue. Petasites japonicus is found with a relatively widespread distribution, and is cultivated as a culinary vegetable in Korea. Petasites japonicus samples were dried either by freeze-drying or by hot air-convection drying ($80^{\circ}C$), then evaluated for their anti oxidative activity by measuring 1-dipheny-1,2-picrylhydrazyl (DPPH) radical scavenging, and by measuring thiobarbituric acid-reactive substances (TBARS) in brain homogenates subjected to $Fe^{2+}$-mediated lipids with or without the addition of botanical extract. Hot air convection-drying resulted in a slight increase in the extraction yield as compared with freeze-drying. However, total phenol and flavonoid contents in freeze-dried Petasites japonicas were significantly higher than those of hot air convection-drying. Freeze-drying increased the free radical scavenging activity of Petasites japonicas, leaves, and stems by 52.6, 28.6, and 248.0%, as compared with hot air convection-drying. Additionally, the $IC_{50}$ values measured by TBARS in hot air convection-dried Petasites japonicas, leaves, and stems were increased by 36.0, 31.6, and 15.9%, as compared to those of freeze-drying. Although anti oxidative activity was reduced slightly by heat processing in Petasites japonicas, freeze-drying for each portion of Petasites japonicus was the most appropriate for use as a functional food and pharmaceutical material.

  • PDF

Quantitative Determination of Bakkenolide D in Petasites japonicus and Farfugium japonicum by HPLC/UV

  • Quilantang, Norman G.;Lee, Ki Ho;Lee, Dong Gu;Lee, Ju Sung;Cho, EunJu;Kim, Hyun Young;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.270-273
    • /
    • 2017
  • A quantitative analysis of bakkenolide D in the different parts of Petasites japonicus and Farfugium japonicum was performed by HPLC. A gradient HPLC elution system with a mobile phase consisting of water: acetonitrile solution (20:80 to 0:100 for 45 min) was followed and an INNO $C_{18}$ column was used for the chromatographic separation. The injection volume, flow rate, and UV detection were $10{\mu}L$, 1 mL/min, and 290 nm, respectively. Results show that both species showed the highest amount of bakkenolide D in the roots being 107.203 and 166.103 mg/g for P. japonicas and F. japonicum, respectively. Content analysis on the different parts of both plants displayed remarkably lower values which ranged from 0.403 - 4.419 and 7.252 - 32.614 mg/g for P. japonicas and F. japonicum, respectively. The results show that the roots of both plants are rich in bakkenolide D showing a promising use in the development of nutraceuticals and industrial application of the compound.

Isolation and Identification of bakkenolides and caffeoylquinic acids from the aerial parts of Petasites japonicus

  • Woo, Hyun Sim;Lee, Min-Sung;Jeong, Hea Seok;Kim, Dae Wook
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.99-99
    • /
    • 2018
  • The major aim of this work is the research of secondary metabolites isolated from the aerial parts of Petasites japonicus. The plant material is extracted with a polar solvent, which is 95% by volume methanol at room temperature. The concentrated extract was partitioned as EtOAc, n-BuOH, and $H_2O$ fractions. From the EtOAC and n-BuOH fraction, two bakkenolides and two caffoylquinic acid were isolated using the Diaion HP-20, silica gel, ODS-A, and Sephadex LH-20 column chromatographies. According to the results of the results of physico-chemical and spectroscopic data including NMR, MS and UV. The chemical structures of the compounds were respectively determined as bakkenolide B (1), bakkenolide D (2), 1,5-dicaffeoylquinic acid (3), and 5-O-caffeoylquinic acid (4). These results suggest that the compounds isolated from the aerial parts of this plant were almost identical with known components of Petasites japonicus. However, it is necessary to investigate more about the difference of amounts of constituents according to harvest area and time.

  • PDF

Investigation of the Dormant Characteristics for Early Production of Young Leaf in Butterbur(Petasites japonicas MAX.) (머위 유엽 조기생산을 위한 휴면특성 조사)

  • 유성오;배종향
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.143-150
    • /
    • 1997
  • In order to produce young leaf of butterbur(Petasites japoflicus MAX.) in early spring, the planting date and relationship between abscisic acid(ABA) content and dormancy were investigated. Under open field condition, the dormancy of rootstock was initiated in the beginning of October, was the deepest in the middle of November and was completely broken in the end of December. When those periods were converted by the low accumulation hour below 5$^{\circ}C$, 900 hours were required approximately. This means that the rootstock needs for dormant breaking necessitates under the low temperature. In relationship between growing period and ABA content, the ABA in root-stock did not exist during maximum growing period, from April to September. This means that the ABA together with other substances in rootstock can be transferred to the shoot part with sprouting. While shoot part withered by decreacing the open field temperature since October, the ABA intiated to exist in rootstock. This means that the ABA in the shoot part can be transferred to the rootstock part. Therefore, it was concluded that the ABA which has been known that inhibiting growth and inducing dormancy was closely related with dormancy of rootstock.

  • PDF

Aqueous extract of Petasites japonicus leaves promotes osteoblast differentiation via up-regulation of Runx2 and Osterix in MC3T3-E1 cells

  • Kim, Eun Ji;Jung, Jae In;Jeon, Young Eun;Lee, Hyun Sook
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.579-590
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Petasites japonicus Maxim (P. japonicus) has been used as an edible and medicinal plant and contains many bioactive compounds. The purpose of this study is to investigate the effect of P. japonicus on osteogenesis. MATERIALS/METHODS: The leaves and stems of P. japonicus were separated and extracted with hot water or ethanol, respectively. The total phenolic compound and total polyphenol contents of each extract were measured, and alkaline phosphatase (ALP) activity of each extract was evaluated to determine their effect on bone metabolism. To investigate the effect on osteoblast differentiation of the aqueous extract of P. japonicus leaves (AL), which produced the highest ALP activity among the tested extracts, collagen content was measured using the Sirius Red staining method, mineralization using the Alizarin Red S staining method, and osteocalcin production through enzyme-linked immunosorbent assay analysis. Also, real-time reverse transcription polymerase chain reaction was performed to investigate the mRNA expression levels of Runt-related transcriptional factor 2 (Runx2) and Osterix. RESULTS: Among the 4 P. japonicus extracts, AL had the highest values in all of the following measures: total phenolic compounds, total polyphenols, and ALP activity, which is a major biomarker of osteoblast differentiation. The AL-treated MC3T3-E1 cells showed significant increases in induced osteoblast differentiation, collagen synthesis, mineralization, and osteocalcin production. In addition, mRNA expressions of Runx2 and Osterix, transcription factors that regulate osteoblast differentiation, were significantly increased. CONCLUSIONS: These results suggest that AL can regulate osteoblasts differentiation, at least in part through Runx2 and Osterix. Therefore, it is highly likely that P. japonicus will be useful as an alternate therapeutic for the prevention and treatment of osteoporosis.

Optimization Mixture Ratio of Petasites japonicus, Luffa cylindrica and Houttuynia cordata to Develop a Functional Drink by Mixture Design (혼합물 실험계획법에 의한 머위 및 부원료의 혼합비율 최적화)

  • Jeong, Hae-Jin;Lee, Kyoung-Pil;Chung, Hun-Sik;Kim, Dong-Seop;Kim, Han-Soo;Choi, Young-Whan;Im, Dong-Soon;Seong, Jong-Hwan;Lee, Young-Guen
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.329-335
    • /
    • 2015
  • This study was performed to determine the optimal ratio of Petasites japonicus, Luffa cylindrica, and Houttuynia cordata, all of which are supposed to have anti-respiratory disease effects, such as against rhinitis. The experiment incorporated a mixture design and included 12 experimental points with center replicates for three different independent variables (Petasites japonicus 30~70%; Luffa cylindrica 10~30%; and Houttuynia cordata 10~30%). Based on this design, the mixture was extracted in hot water at 121℃ for 45 min and anti-allergy and anti-microbial activities were observed. The response surface and trace plot described for the anti-allergy activity showed Petasites japonicas was a relatively important factor. The correlation coefficient (R2) value 82.10% for the inhibition effect of degranulation was analyzed by the regression equation. The analysis of variance showed the model fit was statistically significant (p<0.05). The optimal ratio of the mixture was Petasites japonicus 0.75%, Luffa cylindrica 0.11%, and Houttuynia cordata 0.14%. The anti-microbial activity for each extraction of the mixture was valid on gram-positive, such as Staphylococcus aureus (KCCM 40881) and Staphylococcus epidermidis (KCCM 35494), while it was less effective on gram-negative, such as Escherichia coli (KCCM 11234) and Pseudomonas aeruginosa (KCCM 11328).