• Title/Summary/Keyword: Perturbation growth

Search Result 37, Processing Time 0.034 seconds

Development of low-frequency streaks in Blasius boundary layer

  • Boiko, A.V.;Chun, H.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.257-261
    • /
    • 2003
  • A free stream vortical disturbance generated by a single axial vortex of periodically modulated strength was used to investigate vortical receptivity of a flat plate boundary layer to low-frequency spatially localized free-stream disturbances. It was found that the boundary-layer response was dominated by stream-wise velocity perturbation (streak). However, in contrast to the stationary streaks considered by Boiko (2002), its intensity showed no pronounced growth along the flat plate.

  • PDF

Growth of Silicon-Germanium Quantum-dots Through Local Enhancement of Surface Diffusivity (표면확산계수의 국소적 향상을 통한 실리콘-게르마늄 양자점의 성장)

  • Kim, Yun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.653-657
    • /
    • 2015
  • A numerical investigation to simulate the selective growth of silicon-germanium quantum-dots via local surface diffusivity enhancement is presented. A nonlinear equation for the waviness evolution of film surface is derived to consider the effects of spatially-varying diffusivity, influenced by a surface temperature profile. Results show that the morphology of the initially planar film shapes into an undulated surface upon perturbation, and a steady-state solution describes a fully grown quantum-dot. The present study points toward a fabrication technique that can obtain selectivity for self-assembly.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

Stability of the Divergent Barotropic Rossby-Haurwitz Wave (발산 순압 로스비-하우어비츠 파동의 안정성)

  • Jeong, Han-Byeol;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

A Study on the Corona Discharge Simulation Using FEM-FCT Method (FEM-FCT 기법을 이용한 코로나 방전 시뮬레이션에 대한 연구)

  • Min, Ung-Gi;Kim, Hyeong-Seok;Lee, Seok-Hyeon;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.200-208
    • /
    • 1999
  • In this paper, the corona discharge is analyzed by Finite Element Method(FEM) combined with Flux-corrected Transport(FCT) algorithm. In the previous papers, Finite Difference Method(FDM) combined with FCT was used. Usually in the FDM, the regionof interest is discretized with structured grids. But to refine local regions with same resolution, much more grids are required for the structured grids than for unstructured grids than for unstructured grids. Therefore, we propose the FEM-FCT method to simulate the corona discharge. The proposed method has good flexibility in model shape and can reduce the computational cost by the local refinement where the physical quantities have steep gradients. Using the proposed method, we study the streamer growth of parallel plate electrodes which is initiated by the low and high perturbation density. We find that the varying the initial density of perturbation has very little effect on the streamer propagation. And the corona discharge of the rod-to-plane electrode is simulated. On the surface of the rod electrode, the high concentration of the electric field gives rise to many number of streamer seeds. The strong axial streamer propagate to the plane electrode. The weaker non-axial streamer repel each other and stop growing more. The results are very similar to those of the papers which used the FDM-FCT method on structured grids. Thus we can conclude that the proposed FEM-FCT method is more efficient than the conventional FDM-FCT method by virtue of the reduction in computational grids number.

  • PDF

The Effect of Electron Diffusion on the Instability of a Townsend Discharge (전자 확산 효과가 Townsend 방전 불안정성에 미치는 영향)

  • Mikhailenko, Vladimir
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • The role of the electron diffusion on the stability of a Townsend discharge was investigated with the linear stability theory for the one-dimensional fluid equation with drift-diffusion approximation. It was proved that the discovered instability occurs as a result of the coupled action of electron diffusion and the perturbed electric field by space charge. The larger electron diffusion results in the faster growth rate at the regime of small perturbation of the electric field by space charges.

Optical Determination of the Heavy-hole Effective Mass of (in, Ga)As/GaAs Quantum Wells

  • Lee, Kyu-Seok;Lee, El-Hang
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.13-24
    • /
    • 1996
  • We determine the reduced mass of heavy-hole exciton and the heavy-hole in-plane mass for a series of (In, Ga)As/GaAs strained layer quantum wells using the magnetolu-minescence measurements of the exciton ground state and the modified perturbation approach. In the theoretical calculation of the magnetoexciton ground state, the exciton reduced mass is considered as an adjustable parameter, and two variation parameters are used in the unperturbed wave function which is expressed in terms of subband wave functions in the growth axis and the product of two-dimensional hydrogen and oscillator like wave functions for the in-plane component. We take into account the energy dependence of transverse and in-plane electron masses in the twoband effective mass approximation. The electron effective mass decreases as either quantum-well width or indium composition increases, and so does the heavy-hole in-plane mass down to the value at the decoupling limit ($m_{hh,\;{\rho}}=0.11m_0$).

  • PDF

Thermoelastic Instability in Functionally Graded Materials (경사기능재료에서의 열탄성 불안정성)

  • Jang, Yong-Hoon;Ahn, Seong-Ho;Lee, Seung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

Nonparametric Bayesian methods: a gentle introduction and overview

  • MacEachern, Steven N.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.445-466
    • /
    • 2016
  • Nonparametric Bayesian methods have seen rapid and sustained growth over the past 25 years. We present a gentle introduction to the methods, motivating the methods through the twin perspectives of consistency and false consistency. We then step through the various constructions of the Dirichlet process, outline a number of the basic properties of this process and move on to the mixture of Dirichlet processes model, including a quick discussion of the computational methods used to fit the model. We touch on the main philosophies for nonparametric Bayesian data analysis and then reanalyze a famous data set. The reanalysis illustrates the concept of admissibility through a novel perturbation of the problem and data, showing the benefit of shrinkage estimation and the much greater benefit of nonparametric Bayesian modelling. We conclude with a too-brief survey of fancier nonparametric Bayesian methods.