• Title/Summary/Keyword: Personalized recommendation service

Search Result 153, Processing Time 0.026 seconds

Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service (설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델)

  • Chen, Biyao;Kang, KyungMo;Kim, JaeKyeong
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.

Personalized Recommendation System for IPTV using Ontology and K-medoids (IPTV환경에서 온톨로지와 k-medoids기법을 이용한 개인화 시스템)

  • Yun, Byeong-Dae;Kim, Jong-Woo;Cho, Yong-Seok;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.147-161
    • /
    • 2010
  • As broadcasting and communication are converged recently, communication is jointed to TV. TV viewing has brought about many changes. The IPTV (Internet Protocol Television) provides information service, movie contents, broadcast, etc. through internet with live programs + VOD (Video on demand) jointed. Using communication network, it becomes an issue of new business. In addition, new technical issues have been created by imaging technology for the service, networking technology without video cuts, security technologies to protect copyright, etc. Through this IPTV network, users can watch their desired programs when they want. However, IPTV has difficulties in search approach, menu approach, or finding programs. Menu approach spends a lot of time in approaching programs desired. Search approach can't be found when title, genre, name of actors, etc. are not known. In addition, inserting letters through remote control have problems. However, the bigger problem is that many times users are not usually ware of the services they use. Thus, to resolve difficulties when selecting VOD service in IPTV, a personalized service is recommended, which enhance users' satisfaction and use your time, efficiently. This paper provides appropriate programs which are fit to individuals not to save time in order to solve IPTV's shortcomings through filtering and recommendation-related system. The proposed recommendation system collects TV program information, the user's preferred program genres and detailed genre, channel, watching program, and information on viewing time based on individual records of watching IPTV. To look for these kinds of similarities, similarities can be compared by using ontology for TV programs. The reason to use these is because the distance of program can be measured by the similarity comparison. TV program ontology we are using is one extracted from TV-Anytime metadata which represents semantic nature. Also, ontology expresses the contents and features in figures. Through world net, vocabulary similarity is determined. All the words described on the programs are expanded into upper and lower classes for word similarity decision. The average of described key words was measured. The criterion of distance calculated ties similar programs through K-medoids dividing method. K-medoids dividing method is a dividing way to divide classified groups into ones with similar characteristics. This K-medoids method sets K-unit representative objects. Here, distance from representative object sets temporary distance and colonize it. Through algorithm, when the initial n-unit objects are tried to be divided into K-units. The optimal object must be found through repeated trials after selecting representative object temporarily. Through this course, similar programs must be colonized. Selecting programs through group analysis, weight should be given to the recommendation. The way to provide weight with recommendation is as the follows. When each group recommends programs, similar programs near representative objects will be recommended to users. The formula to calculate the distance is same as measure similar distance. It will be a basic figure which determines the rankings of recommended programs. Weight is used to calculate the number of watching lists. As the more programs are, the higher weight will be loaded. This is defined as cluster weight. Through this, sub-TV programs which are representative of the groups must be selected. The final TV programs ranks must be determined. However, the group-representative TV programs include errors. Therefore, weights must be added to TV program viewing preference. They must determine the finalranks.Based on this, our customers prefer proposed to recommend contents. So, based on the proposed method this paper suggested, experiment was carried out in controlled environment. Through experiment, the superiority of the proposed method is shown, compared to existing ways.

Development of Multi-agent based Personalized-TV Program Service System using TV-Anytime (TV-Anytime을 이용한 멀티에이전트 기반의 개인화된 TV 프로그램 서비스 시스템 개발)

  • Ha, Kyung-Hui;Kim, Gun-Hee;Choi, Jin-Woo;Ha, Sung-Do
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.333-338
    • /
    • 2006
  • 최근 사용자에 대한 많은 정보를 얻는 것이 가능해지면서, 데이터마이닝 기법이나 Contents 추천 기법을 이용한 맞춤형 서비스가 가능하게 되었다. 특히, 대부분의 사람들에게 TV 프로그램 시청은 여가생활시간에서 가장 높은 비중을 차지 하고 있다. 따라서, 보다 지능적인 TV 프로그램 서비스를 제공하는 기술에 대하여 관심이 고조되고 있다. 본 논문에서는 TV-Anytime을 이용하여 개인화된 Electronic Program Guide (EPG)를 생성하고, 개인화된 EPG 정보를 활용하여 시청자에게 맞춤형 TV 프로그램 서비스를 제공하는 시스템에 대한 연구 결과를 제시한다. 또한 시청자의 시청패턴과 TV 프로그램 선호도를 바탕으로 시청자가 원하는 프로그램을 추천하는 TV Program Recommender Agent와 방송 및 TV 프로그램에 대한 대화를 담당하는 TV Program Helper Agent, 시스템 조정 및 메시지 전달을 담당하는 Coordinator Agent로 이루어진 멀티에이전트 기반 시스템 구조를 제시한다.

  • PDF

Identifying Prospective Visitors and Recommending Personalized Booths in the Exhibition Industry

  • Moon, Hyun Sil;Kim, Jae Kyeong;Choi, Il Young
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.85-105
    • /
    • 2014
  • Exhibition industry is important business domains to many countries. Not only lots of countries designated the exhibition industry as tools to stimulate national economics, but also many companies offer millions of service or products to customers. Recommender systems can help visitors navigate through large information spaces of various booths. However, no study before has proposed a methodology for identifying and acquiring prospective visitors although it is important to acquire them. Accordingly, we propose a methodology for identifying, acquiring prospective visitors, and recommending the adequate booth information to their preferences in the exhibition industry. We assume that a visitor will be interested in an exhibition within same class of exhibition taxonomy as exhibition which the visitor already saw. Moreover, we use user-based collaborative filtering in order to recommend personalized booths before exhibition. A prototype recommender system is implemented to evaluate the proposed methodology. Our experiments show that the proposed methodology is better than the item-based CF and have an effect on the choice of exhibition or exhibit booth through automation of word-of-mouth communication.

Context Based User Profile for Personalization in Ubiquitous Computing Environments (유비쿼터스 컴퓨팅 환경에서 개인화를 위한 상황정보 기반 사용자 프로파일)

  • Moon, Ae-Kyung;Kim, Hyung-Hwan;Park, Ju-Young;Choi, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.542-551
    • /
    • 2009
  • We proposed the context based user profile which is aware of its user's situation and based on user's situation it recommends personalized services. The user profile which consists of (context, service) pair can be acquired by the context and the service usage of a user; it then can be used to recommend personalized services for the user. In this paper, we show how they can be evolved without previously known user information so that not to violate privacy during the learning phase; in the result our user profile can be applied to any new environment without any modification to model only except context profiles. Using context-awareness based user profile, the service usage pattern of a user can be learned by the union of contexts and the preferred services can be recommended by the current environments. Finally, we evaluate the precision of proposed approach using simulation with data sets of UCI depository and Weka tool-kit.

Meta-data Configuration and Wellness Feature Analysis Technique for Wellness Content Recommendation (웰니스 콘텐츠 추천을 위한 메타데이터 구성 및 웰니스 특성 분석 기법)

  • Hong, Min-Sung;Lee, O-Joun;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.83-93
    • /
    • 2014
  • Research into recommendation systems for wellness content has focused on representative research on the convergence of wellness and information technology, as interest in wellness has recently increased. But existing research is not suitable because it uses only one or two of the five wellness areas: physical, emotional, social, intellectual, and spiritual. And It cause decline of reliability and satisfaction for recommendation. Thus, a wellness areal feature analysis and integration management technique is needed. In this paper, suggest meta-data configuration and feature analysis technique of content. Also Cosine similarity of wellness areal features of the content was analyzed by applying a wellness areal score calculated in this way and by suggested wellness areal detailed properties and a measurement system to verify the efficiency of this research. This allows the wellness features of contents analyzed, and even will be able to personalized recommendations service for wellness.

Implementation of Demo Program for Visual Communication in Compliance with MPEG-21 Part 22: User Description (MPEG-UD 표준을 준수하는 비쥬얼 커뮤니케이션 데모 프로그램 개발)

  • Lim, Hea-Jin;Choi, Jang-Sik;Jeon, Jin-Young;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.297-301
    • /
    • 2016
  • ISO/IEC JTC1/SC29WG11 MPEG has been standardizing UD(user description) to give a user personalized recommendation services. Besides, CD(context description), service description(SD), and recommendation description(RD) are recently being standardized by UD Adhoc Group in MPEG with an advanced UD to cope with needs of current and upcoming services such as augmented reality and social network. The descriptions was reflected to MPEG-UD WD(Working Draft) at MPEG $107^{th}$ meeting and the document was finally approved as international standard by national bodies with standard number(ISO/IEC IS 21000-22 UD) at $114^{th}$ MPEG meeting. In addition, reference software WD to validate conformance of UD standard was approved at $113^{th}$ MPEG meeting. In this paper, we developed a demo program for visual communication according to guideline defined in reference software WD to validate the reference software as well as UD standard.

Recommendation System of OTT Service using Extended Personal Data (확장된 개인 데이터를 활용한 OTT 서비스 추천 시스템)

  • HeeJung Yu;Neunghoe Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • According to the Korea Information Society Development Institute, OTT services grew at a rate of 33.4% in four yearsfrom 2017, when they were first launched.TheKorea Export-Import Bank announced in 2020 that the domestic OTT market was worth 780.1 billionKRW. This growth of the OTT market is expected to stimulate competition among OTT service platforms, and user satisfactionwithconvenience features, such as video recommendations, seems to be acting as an important factor in the competition.Currently, the OTT market uses a variety ofdata for customized recommendations, but the limitationis that it only uses datacollected within the app. Thereby we have proposed the use ofpersonal data collected outside the app for personalized recommendations, and the survey results showed that user satisfaction was 23.72% higher for recommended content based on the proposedmethod thanNetflix recommended content.

Design and Development of POS System Based on Social Network Service (소셜 네트워크 서비스 기반의 POS 시스템 설계 및 개발)

  • Yoon, Jung Hyun;Moon, Hyun Sil;Kim, Jae Kyeong;Choi, Ju Cheol
    • Journal of Information Technology Services
    • /
    • v.14 no.2
    • /
    • pp.143-158
    • /
    • 2015
  • Companies and governments in an era of big data have been tried to create new values with their data resources. Among many data resources, many companies especially pay attention to data which is obtained from Social Network Service (SNS) because it reveals precise opinion of customers and can be used to estimate profiles of them from their social relationships. However, it is not only hard to collect, store, and analyze the data, but system applications are also insufficient. Therefore, this study proposes a S-POS (Social POS) system which consists of three parts; Twitter Side, POS Side and TPAS (Twitter&POS Analysis System). In this system, SNS data and POS data which are collected from Twitter Side and POS Side are stored in Mongo D/B. And it provides several services with POS terminal based on analysis and matching results which are generated from TPAS. Through S-POS system, we expect to efficient and effective store and sales managements of system users. Moreover, they can provide some differentiated services such as cross-selling and personalized recommendation services.

Development of Personalized Media Contents Curation System based on Emotional Information (감성 정보 기반 맞춤형 미디어콘텐츠 큐레이션 시스템 개발)

  • Im, Ji-Hui;Chang, Du-Seong;Choe, Ho-Seop;Ock, Cheol-Young
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.181-191
    • /
    • 2016
  • We analyzed the search word of the media content in the IPTV service, and as a result we found that an important factor is general meta information as well as content(material, plot, etc.) and emotion information in the media content selection criteria of customers. Therefore, in this research, in order to efficiently provide various media contents of IPTV to users, we designed the emotion classification system for utilizing the emotion information of the media content. Next, we proposed 'personalized media contents curation system based on emotion information' for organizing the media contents, through the various processing steps. Finally, to demonstrate the effectiveness of this system, we conducted a user satisfaction survey(72.0 points). In addition, the results of comparing the results based on popularity and the results of the proposed system showed that the ratio leading to the actual users' viewing behavior was 10 times higher.