The integration of ChatGPT, an AI-powered language model, is causing a profound transformation within the food industry, impacting various domains. It offers novel capabilities in recipe creation, personalized dining, menu development, food safety, customer service, and culinary education. ChatGPT's vast culinary dataset analysis aids chefs in pushing flavor boundaries through innovative ingredient combinations. Its personalization potential caters to dietary preferences and cultural nuances, democratizing culinary knowledge. It functions as a virtual mentor, empowering enthusiasts to experiment creatively. For personalized dining, ChatGPT's language understanding enables customer interaction, dish recommendations based on preferences. In menu development, data-driven insights identify culinary trends, guiding chefs in crafting menus aligned with evolving tastes. It suggests inventive ingredient pairings, fostering innovation and inclusivity. AI-driven data analysis contributes to quality control, ensuring consistent taste and texture. Food writing and marketing benefit from ChatGPT's content generation, adapting to diverse strategies and consumer preferences. AI-powered chatbots revolutionize customer service, improving ordering experiences, and post-purchase engagement. In culinary education, ChatGPT acts as a virtual mentor, guiding learners through techniques and history. In food safety, data analysis prevents contamination and ensures compliance. Overall, ChatGPT reshapes the industry by uniting AI's analytics with culinary expertise, enhancing innovation, inclusivity, and efficiency in gastronomy.
전자 학술 정보 유통의 확대에 따라 날로 증가되는 학술 콘텐츠 서비스 수요에 부응하기 위하여 보다 효과적인 학술 콘텐츠 추천 시스템 개발이 요구된다. 학술 콘텐츠 추천 시스템은 정보 소비자의 과거 이용 내역을 기반으로 각 소비자 선호(preference)에 맞는 학술 콘텐츠를 제공함으로써 콘텐츠 이용성을 보다 효과적으로 향상 시킬 수 있다. 본 논문에서는 특정 기관에 소속된 사용자의 선호에 더욱 부합하는 학술 콘텐츠를 제공하기 위하여 기관의 전자 저널 구독 정보 및 웹 이용 로그를 활용한 저널 추천 기법을 제안한다. 제안하는 추천 기법에서는 기관 사용자의 저널 선호도를 효과적으로 예측하기 위하여 기관 유사도(Institution similarity), 그리고 참고문헌의 인용 관계 데이터를 기반으로 저널 유사도(Journal similarity) 및 저널 중요도(Journal importance)를 산출하여 최종적으로 기관 맞춤형 저널 추천 항목을 구성하게 된다. 또한, 제안하는 추천기법이 적용된 기관 맞춤형 저널 추천 시스템 프로토타입을 개발한다. 개발된 저널 추천 시스템은 각 기관의 저널 선호도 예측을 위하여 활용되는 웹 이용로그를 효과적으로 수집하고 이를 추천 기법에 활용하기 용이한 데이터로 가공 처리 하여 별도의 데이터베이스에 저장하여 추천 기법의 저널 선호도 예측을 위한 기반 데이터로 활용한다. 마지막으로 우리는 기존 추천 기법들과의 비교 성능 평가를 통해 제안 기법의 차별성과 우수성을 보인다.
The demand for personalized products and service of apparel product has increased dramatically. In order to acquire a personalized apparel product, consumers may have to sacrifice more expense or time. The purpose of this study was to investigate various personalization strategies in apparel business and to identify antecedents that influence the process. Clothing involvement and two price related variables (clothing expense and willingness to pay more) were included in the study as antecedents. Four personalization strategies were included in the study: design selection, size customization, in-store service and promotion personalization. For an empirical study, a conceptual model was designed and research questionnaire was developed. A measure of personalization of apparel shopping was developed based on existing scale items of prior research and a pilot study. Data from 766 men and women in their twenties to forties were used for statistical analysis. Structural Equation Modeling was used for the data analysis. Results indicated that the conceptual model was a good fit to data. Structural paths indicated that there was significant influence of clothing involvement on design selection and sales promotion personalization strategies. Involved consumers spent more on chothing products and were likely to pay more on personalized products and services. Monthly clothing expense influenced size customization significantly. It also had negative influence on service related personalization strategies. Consumers were willing to pay more when it comes to product related personalization strategies such as design and size but not necessarily to service related strategies. This study was an attempt to provide an in-depth and synthesized approach on consumer attitudes toward personalization of apparel products.
Jang S. J.;Park S. R.;Jang Y. G.;Oh Y. K.;Kwak H. M.;Diwakar Praveen Kumar;Park S. H.;Yoon Y. R.
대한의용생체공학회:의공학회지
/
제26권5호
/
pp.343-349
/
2005
Continuously motivating people to exercise regularly is more important than finding a way out of barriers such as lack of time, cost of equipment, lack of nearby facilities, and poor weather. Our proposed system presents practicable methods of motivation through a diverse exercise aid system. The Health Improvement and Management System (all-in-one system which saves space and maintenance costs) measures and evaluates a diverse body shape analysis and physical fitness test and directs users to automated personalized exercise prescription which is prescribed by the expert system of three types of exercise templates: aerobics, anaerobics, and leisure sports. Automated personalized exercise prescriptions are built into XML based documents because the data needs to be in the form of flexible, expansible, and convertible structures in order to process various exercise templates, BIOFIT, a digital exercise trainer, monitors and provides feedback on the physiological parameters while users are working out in the gymnasium. If these parameters do not range within the prescribed target zone, the device will alarm users to control the exercise and make the exercise trainer adjust systemically the proper exercise level. Numeric health information such as the report of the physical fitness test and the exercise prescription makes people stay interested in exercising. In addition, this service can be delivered through the Internet.
유비쿼터스 컴퓨팅에서 대부분의 시스템들이 개인화된 추천을 위하여 사용자와 성향이 비슷한 사람들의 컨텍스트 정보를 분석하는데 인구통계학적 방법이나 협력적 필터링을 주로 사용한다. 서비스 추천 시스템들은 컨텍스트 정보 중에서 성별, 나이, 직업, 구매이력 등의 정적 컨텍스트를 주로 사용하고 있다. 그러나 이러한 시스템은 이동경로 같은 사용자의 상황을 고려하기가 어렵기 때문에 개인의 성향을 정확하게 분석하여 실시간으로 개인화된 추천 서비스를 제공하는데 한계가 있다. 본 논문에서는 사용자의 상황을 고려하기 위해 동적 컨텍스트 중에서 사용자의 이동경로를 이용한다. 이동경로의 예측 정확도를 높이기 위해 RSOM의 입력으로 들어가는 이동경로를 경로보정 알고리즘을 사용하여 보정한다. 그리고 보정된 경로를 RSOM으로 학습시켜 사용자의 이동패턴을 분석하고 향후 이동경로를 예측한 후, 사용자의 선호도가 높은 상품들 중에서 예측 경로 상에 있는 가장 가까운 상품을 실시간으로 추천한다. 제안한 방법의 예측 정확도를 측정한 결과 MAE가 평균 0.5 이하로 측정됨으로써 사용자의 이동경로를 올바르게 예측할 수 있음을 확인하였다.
본 논문에서는 엣지 컴퓨팅 기반의 개인 맞춤형 운동 정보수집 시스템을 활용하여 개인 맞춤형 재활 운동 코칭 및 관리 서비스를 위한 모바일 앱을 제안한다. 사용자의 입력 정보에 의존하는 기존 관리 방식은 실질적인 재활 가능성을 타진하기에 어려움이 있다. 본 논문에서는 원격지의 엣지 컴퓨팅 기반의 영상정보에 대한 분석을 통하여 신체 관절정보와 함께 운동 정보를 수집하여 해당 운동의 시간 및 정확도를 측정하고 올바른 자세정보를 통한 재활 진척도를 제공하는 애플리케이션을 구현한다. 또한, 재활 센터의 측정 장비와 연동하여 건강상태를 관리할 수 있으며, 운동정보의 정확도 및 경향성 분석 정보를 제공한다. 본 연구의 결과를 통하여 비대면 환경에서의 자가 재활 운동에 따른 관리 및 코칭이 가능할 것으로 사료된다.
본 연구는 AI의 학교교육 영향이 확대됨에 따른 교사의 직무 변화에 대한 연구이다. 전통적으로 교사는 교실 수업, 교육과정 개발, 평가 및 피드백과 같은 핵심 업무를 담당해왔다. AI는 이러한 과정을 자동화할 수 있으며, 특히 개인화된 학습을 통해 효율성을 높일 수 있으며 학생 추적, 행동 감지 및 그룹 활동 분석과 같은 복잡한 교실 관리 작업을 지원할 수 있다. 그러나 AI는 상담 및 대인 커뮤니케이션과 같은 학생 생활 지도에 중요한 측면을 자동화가 어려운 것으로 나타났다. 이와 같은 직무에서 AI가 직접적으로 상담활동을 대체 하는 것은 어렵지만, 데이터 기반의 인사이트와 사전 대화 자료를 제공함으로써 교사를 지원할 수 있다. AI시대의 교사 역량 강화 요소로는 심화 학습 운영 전문성, 데이터셋 분석 능력, 개별학습 운영 능력, 학생 및 학부모 상담역량, 그리고 AI디지털 역량이 필요하다. 교사는 AI와 협업하여 창의성과 확장적 추상능력을 강조하는 수업을 운영하고, AI시스템에서 생성된 데이터셋을 분석하고 개별화된 학습 경로를 조정하는 역량을 가져야 한다. 또한 개별화된 학습과 학생 상담에 집중하여 AI로 대체되기 어려운 부분을 수행해야 한다. 교사의 기본적인 역량으로는 AI디지털 소양 능력이 필요하며, AI시스템에 대한 이해와 학생 데이터 관리 역량이 요구된다.
This study examines whether key characteristics of cloud computing services would affect the intention of use for personalized cloud computing services. The research model was generated based on Technology Acceptance Model (TAM) with resistance variable, and verified statistically by undertaking a survey about the perception of personal users. As the results of this analysis, we could find the structural relationship among the factors affecting adoption of the cloud computing service. We found that the expectation of ubiquity as a representative function of the cloud computing service meaningfully affected the perceived ease of use and resistance, and that the relativeness with existing services also meaningfully affected the perceived ease of use, but not the resistance. In addition, the moderating effects of use experience in the path leading from the perceived ease of use and resistance to the intention of use were identified. This study will provide diverse implications for the companies providing personalized cloud computing services.
The MICE(Meeting, Incentive travel, Convention, and Exhibition) industry grows steadily. Especially, exhibition industry plays an important role as the effective sales and marketing tools. However, lots of studies have focused on the flow analysis of audience traffic, booth recommendation or formulaic interactions between audiences and contents in the exhibition hall. In this study, we proposed an intelligent Interactive system considering audience's response for providing personalized exhibition service. First, we extracted components of the system architecture through the previous studies. Second, we suggested the system architecture and scenarios for intelligent interactions between audiences and contents. We hope that the proposed system will strengthen the basis for implementing interactive system in the exhibition industry.
Effective energy consumption now becomes one of the area of knowledge management which potentially gives global impact. It is considerable for the energy management to optimize the usage of energy, rather than decreasing energy consumption at any cases. To resolve these challenges, an intelligent and personalized system which helps the individuals control their own behaviors in an optimal and timely manner is needed. So far, however, since the legacy energy management systems are nation-wide or organizational, individual-level energy management is nearly impossible. Moreover, most estimating methods of energy consumption are based on forecasting techniques which tend to risky or analysis models which may not be provided in a timely manner. Hence, the purpose of this paper is to propose a novel individual-level energy management system which aims to realize timely and personalized energy management based on context-aware computing approach. To do so, an index model for energy consumption is proposed with a corresponding service framework.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.