• 제목/요약/키워드: Personalized analysis

검색결과 549건 처리시간 0.026초

중소유통업체의 CRM 도입방안에 관한 연구 (A study on the CRM strategy for medium and small industry of distribution)

  • 김기평
    • 유통과학연구
    • /
    • 제8권3호
    • /
    • pp.37-47
    • /
    • 2010
  • CRM은 고객에 대한 가치를 잘 이해하고 고객정보를 바탕으로 하여 그들의 욕구를 충족시키고 나아가서는 평생가치(Life Time Value)를 극대화시킬 수 있는 전략수립 및 고객관리프로세스를 통합적으로 잘 운영하는 것이다. 또한 이를 고객들과 좋은 관계로 유지 발전시켜서 궁극적으로는 회사의 수익을 최대화하기 위한 경영활동이다. 성공적인 CRM을 위한 전략은 고객접점을 담당하는 조직의 변화와 고객관리 프로세스를 재설계한 후에, 기업이 장기적인 계획으로 고객관계를 유지시키는 마케팅 전략과 시장 환경대응에 적절한 방법으로 통합시스템을 구축하여 전사적인 프로그램으로 전개되어야 한다. 또한 CRM 프로그램을 꾸준히 기업 특성에 맞게 개선과 보완활동을 펴나가야만 한다. 특히 중소규모의 유통업체들의 성공적인 CRM을 위한 전략은 다음과 같다. 첫째, CRM에 대한 인식을 바꾸고 고객에 대한 관심을 깊이 기울여야 한다. 둘째, 선진기업들의 CRM 기법을 벤치마킹하여 성공 포인트를 찾아내어 활용한다. 셋째, 나만의 재주와 장기를 마케팅에 접목하는 아이디어를 통해 자사 여건에 알맞은 방법을 모색한다. 넷째, 작지만 화제성 강한 이벤트 행사 등을 통하여 스위스의 소상공인의 사례처럼 개별고객에 대한 관계증진을 키울 수 있는 CRM 모델을 개발하여야 한다.

  • PDF

평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구 (How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores)

  • 현지연;유상이;이상용
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.219-239
    • /
    • 2019
  • 개인에게 맞춤형 서비스를 제공하는 것이 중요해지면서 개인화 추천 시스템 관련 연구들이 끊임없이 이루어지고 있다. 추천 시스템 중 협업 필터링은 학계 및 산업계에서 가장 많이 사용되고 있다. 다만 사용자들의 평점 혹은 사용 여부와 같은 정량적인 정보에 국한하여 추천이 이루어져 정확도가 떨어진다는 문제가 제기되고 있다. 이와 같은 문제를 해결하기 위해 현재까지 많은 연구에서 정량적 정보 외에 다른 정보들을 활용하여 추천 시스템의 성능을 개선하려는 시도가 활발하게 이루어지고 있다. 리뷰를 이용한 감성 분석이 대표적이지만, 기존의 연구에서는 감성 분석의 결과를 추천 시스템에 직접적으로 반영하지 못한다는 한계가 있다. 이에 본 연구는 리뷰에 나타난 감성을 수치화하여 평점에 반영하는 것을 목표로 한다. 즉, 사용자가 직접 작성한 리뷰를 감성 수치화하여 정량적인 정보로 변환해 추천 시스템에 직접 반영할 수 있는 새로운 알고리즘을 제안한다. 이를 위해서는 정성적인 정보인 사용자들의 리뷰를 정량화 시켜야 하므로, 본 연구에서는 텍스트 마이닝의 감성 분석 기법을 통해 감성 수치를 산출하였다. 데이터는 영화 리뷰를 대상으로 하여 도메인 맞춤형 감성 사전을 구축하고, 이를 기반으로 리뷰의 감성점수를 산출한다. 본 논문에서 사용자 리뷰의 감성 수치를 반영한 협업 필터링이 평점만을 고려하는 전통적인 방식의 협업 필터링과 비교하여 우수한 정확도를 나타내는 것을 확인하였다. 이후 제안된 모델이 더 개선된 방식이라고 할 근거를 확보하기 위해 paired t-test 검증을 시도했고, 제안된 모델이 더 우수하다는 결론을 도출하였다. 본 연구에서는 평점만으로 사용자의 감성을 판단한 기존의 선행연구들이 가지는 한계를 극복하고자 리뷰를 수치화하여 기존의 평점 시스템보다 사용자의 의견을 더 정교하게 추천 시스템에 반영시켜 정확도를 향상시켰다. 이를 기반으로 추가적으로 다양한 분석을 시행한다면 추천의 정확도가 더 높아질 것으로 기대된다.

Establishing a Nomogram for Stage IA-IIB Cervical Cancer Patients after Complete Resection

  • Zhou, Hang;Li, Xiong;Zhang, Yuan;Jia, Yao;Hu, Ting;Yang, Ru;Huang, Ke-Cheng;Chen, Zhi-Lan;Wang, Shao-Shuai;Tang, Fang-Xu;Zhou, Jin;Chen, Yi-Le;Wu, Li;Han, Xiao-Bing;Lin, Zhong-Qiu;Lu, Xiao-Mei;Xing, Hui;Qu, Peng-Peng;Cai, Hong-Bing;Song, Xiao-Jie;Tian, Xiao-Yu;Zhang, Qing-Hua;Shen, Jian;Liu, Dan;Wang, Ze-Hua;Xu, Hong-Bing;Wang, Chang-Yu;Xi, Ling;Deng, Dong-Rui;Wang, Hui;Lv, Wei-Guo;Shen, Keng;Wang, Shi-Xuan;Xie, Xing;Cheng, Xiao-Dong;Ma, Ding;Li, Shuang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3773-3777
    • /
    • 2015
  • Background: This study aimed to establish a nomogram by combining clinicopathologic factors with overall survival of stage IA-IIB cervical cancer patients after complete resection with pelvic lymphadenectomy. Materials and Methods: This nomogram was based on a retrospective study on 1,563 stage IA-IIB cervical cancer patients who underwent complete resection and lymphadenectomy from 2002 to 2008. The nomogram was constructed based on multivariate analysis using Cox proportional hazard regression. The accuracy and discriminative ability of the nomogram were measured by concordance index (C-index) and calibration curve. Results: Multivariate analysis identified lymph node metastasis (LNM), lymph-vascular space invasion (LVSI), stromal invasion, parametrial invasion, tumor diameter and histology as independent prognostic factors associated with cervical cancer survival. These factors were selected for construction of the nomogram. The C-index of the nomogram was 0.71 (95% CI, 0.65 to 0.77), and calibration of the nomogram showed good agreement between the 5-year predicted survival and the actual observation. Conclusions: We developed a nomogram predicting 5-year overall survival of surgically treated stage IA-IIB cervical cancer patients. More comprehensive information that is provided by this nomogram could provide further insight into personalized therapy selection.

Are you a Machine or Human?: 소셜 로봇의 인간 유사성과 소비자 해석수준이 의인화에 미치는 영향 (Are you a Machine or Human?: The Effects of Human-likeness on Consumer Anthropomorphism Depending on Construal Level)

  • 이준식;박도형
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.129-149
    • /
    • 2021
  • 최근 인간과 사회적으로 상호작용할 수 있는 소셜 로봇(Social Robot)에 대한 관심이 커지고 있다. ICT 기술 발전에 힘입어 소셜 로봇이 개인에게 맞춤형 서비스와 정서적 교감을 제공하기 쉬워졌으며, 현대의 사회문제들과 이로 인한 개인의 삶의 질 저하를 해소하기 위한 수단으로 소셜 로봇의 역할이 주목받고 있다. 소셜 로봇에 대한 관심에 힘입어 소셜 로봇 보급 또한 크게 늘고 있다. 많은 기업이 다양한 목표시장을 겨냥하기 위한 로봇 제품들을 시장에 선보이고 있으나, 현재까지 시장을 선도하는 명확한 흐름은 부재하다. 이에 따라 소셜 로봇의 디자인을 통해 로봇을 차별화하고자 하는 시도가 늘고 있다. 특히 의인화는 소셜 로봇 디자인에서 중요하게 연구되고 있으며, 소셜 로봇을 의인화하여 긍정적인 효과를 발현하려는 접근이 많이 시도되었다. 그러나 소셜 로봇에 대한 의인화가 형성되는 메커니즘을 체계적으로 설명하는 연구는 부족하다. 의인화에 대한 모호한 이해는 소셜 로봇의 의인화를 형성하기 위한 디자인 최적점의 도출을 어렵게 하고 있다. 본 연구는 소셜 로봇의 의인화가 형성되는 메커니즘을 검증하는 것을 목적으로 한다. 본 연구는 3×2 Mixed Design의 실험 연구를 통해 소셜 로봇의 인간 유사성(Human-likeness)과 개인의 해석수준(Construal Level)이 의인화 형성에 미치는 영향을 확인하였다. 의인화가 형성되는 메커니즘에 대한 6개의 연구 가설을 제시하고, 206명 표본의 데이터를 분석하여 가설을 검증하였다. 분석 결과 소셜 로봇의 인간 유사성 수준에 따라 로봇 의인화 수준이 높아지며, 소비자 해석수준에 따라 인간 유사성이 의인화에 미치는 영향이 다르게 나타남을 확인하였다. 본 연구는 소셜 로봇의 디자인 속성인 인간 유사성과 개인의 사고방식인 해석수준을 함께 고려하여 의인화가 형성되는 메커니즘을 설명하였다는 점에서 시사점이 있다. 본 연구의 결과를 소셜 로봇 의인화 형성을 위한 디자인 최적화의 기준으로 활용할 수 있을 것으로 기대한다.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • 마케팅과학연구
    • /
    • 제18권3호
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF

생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성 : MEG 연구 (ERF Components Patterns of Causal Question Generation during Observation of Biological Phenomena : A MEG Study)

  • 권석원;권용주
    • 과학교육연구지
    • /
    • 제33권2호
    • /
    • pp.336-345
    • /
    • 2009
  • 이 연구의 목적은 생명현상 관찰에서 나타나는 인과적 의문 생성 ERF components를 개발하는 것이다. 이를 위해 우선 인지심리적 방법으로 생명현상 기반의 인과적 의문생성 유발 사진 과제를 개발하였다. 이를 활용해 전기생리적 방법인 MEG(Magnetoencephalography) 두뇌 영상 기기를 이용하여 시계열적 두뇌 처리과정에 기초한 인과적 의문의 ERF(Event Related Fields) 패턴을 확인할 수 있었다. 생명현상 기반의 인과적 의문생성 유발 사진은 과학교육 전문가와 과학교육연구진으로 구성된 인원의 R&D 방식으로 개발되었다. 과제는 생물군 유형에 따라 동물(A, animal), 미생물(M, microbe), 식물(P, plant)과제로 분류 형태를 나누고, 생물 개체 수준의 유형에 따라 개체간 상호작용(i, interaction), 단일 개체(a, all), 개체 일부(p, part)로 구분하여 총 100장에 대한 인과적 의문 유발 사진을 완성하였다. 이후 서울대학병원 MEG 센터팀과의 세미나 과정을 통해 MEG 과제용 패러다임을 개발하고, 과학교육 전공 여자 대학원생 5명(M=26.4, SD=2.30)을 대상으로 인과적 의문생성간 MEG data를 수집하였다. 이를 통해 인과적 의문 유형별 고유 특성을 확인하기 위해 MEG ERF components 분석을 실시하였다. 인과적 의문 생성시 나타나는 ERF components 분석 결과 M1(100~130ms), M2(220~280ms), M3(320~390ms), M4(460~520ms) 총 4개 components 패턴이 발견되었다. M1과 M2의 경우 인과적 의문 사진 과제 제시에 따라 피험자가 관찰하는 동안 보고 되는 것으로 dipole fitting 과정을 통해 두뇌 활성 영역을 확인해 본 것처럼 시각령이 위치하는 후두엽에 걸쳐 확인되었다. M3 components의 경우 인과적 의문에 대한 불확실감을 해소하기 위해 장기기억 저장소로부터 경험 상황을 가지고 오는 귀추의 과정을 반영한다고 볼 수 있다. 이는 이전 경험상황을 분석하는 단계에 해당하며 학생들이 가설을 생성할 때 가장 큰 어려움을 경험하여 교사의 적절한 도움이 요구되는 부분이다. M4 components는 장기 기억 속의 경험 상황에서 인과적 의문에 대한 설명자를 표상하는 단계에 해당하는 것으로 인과적 의문 생성 후 가설을 만드는 전 단계에 해당 한다고 할 수 있다. 본 연구는 확인된 인과적 의문 생성시 나타나는 MEG ERF components와 latency 시간을 통해 인과적 의문 생성에 어려움을 호소하는 학생들에 대한 개별적 교수 처치와 더불어 고등인지 영역의 ERF 연구의 기초를 마련하였다는데 의의가 있다고 하겠다.

  • PDF

대학생의 건강지각, 자기효능감, 사회적 지지가 건강증진행위에 미치는 영향 (Effects of Health Perception, Self-efficacy and Social Support of College Students on the Health Promotion Behaviors)

  • 우복진;이혜경
    • 한국응용과학기술학회지
    • /
    • 제36권4호
    • /
    • pp.1290-1302
    • /
    • 2019
  • 본 연구는 대학생의 건강지각, 자기효능감, 사회적 지지가 건강증진행위에 미치는 영향을 확인하기 위한 서술적 조사연구이다. 본 연구대상자는 충남 일개 대학에 재학 중인 대학생 196명을 대상으로 하였으며, 자료 수집은 2018년 9월 10일부터 10월 5일까지 이루어졌다. 연구결과 대학생의 일반적 특성에 따른 건강증진행위의 차이에 대한 분석 결과 거주형태(F=8.56, p<.001), 주관적 건강상태(F=7.23, p=.001), 대학생활 만족도(F=8.50, p<.001), 운동여부(t=6.62, p<.001), 주당 아침식사 횟수(F=14.13, p<.001)에 따라 통계적으로 유의한 수준에서 차이가 있었다. 건강증진행위와 건강지각(r=.44, p<.001), 자기효능감(r=.57, p<.001), 사회적 지지(r=.49, p<.001)가 서로 유의미한 양의 상관관계를 보였다. 대학생의 건강증진행위에 영향을 미치는 요인(F=34.921, p<.001)은 자기효능감, 사회적 지지, 주당 아침식사 횟수(5회 이상), 운동여부(한다), 주당 아침식사 횟수(2~4회), 거주형태는 자취·하숙, 학년은 4학년이었으며, 설명력은 총 56.9%이었다. 건강증진행위를 향상시키기 위해서는 자기효능감과 사회적 지지 체계를 고려하고 적절한 운동과 올바른 식습관에 대한 중요성을 포함한 세대별 맞춤형 건강증진프로그램 개발 및 중재가 필요하다.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

스마트폰 위치기반 어플리케이션의 이용의도에 영향을 미치는 요인: 프라이버시 계산 모형의 적용 (Factors Influencing the Adoption of Location-Based Smartphone Applications: An Application of the Privacy Calculus Model)

  • 차훈상
    • Asia pacific journal of information systems
    • /
    • 제22권4호
    • /
    • pp.7-29
    • /
    • 2012
  • Smartphone and its applications (i.e. apps) are increasingly penetrating consumer markets. According to a recent report from Korea Communications Commission, nearly 50% of mobile subscribers in South Korea are smartphone users that accounts for over 25 million people. In particular, the importance of smartphone has risen as a geospatially-aware device that provides various location-based services (LBS) equipped with GPS capability. The popular LBS include map and navigation, traffic and transportation updates, shopping and coupon services, and location-sensitive social network services. Overall, the emerging location-based smartphone apps (LBA) offer significant value by providing greater connectivity, personalization, and information and entertainment in a location-specific context. Conversely, the rapid growth of LBA and their benefits have been accompanied by concerns over the collection and dissemination of individual users' personal information through ongoing tracking of their location, identity, preferences, and social behaviors. The majority of LBA users tend to agree and consent to the LBA provider's terms and privacy policy on use of location data to get the immediate services. This tendency further increases the potential risks of unprotected exposure of personal information and serious invasion and breaches of individual privacy. To address the complex issues surrounding LBA particularly from the user's behavioral perspective, this study applied the privacy calculus model (PCM) to explore the factors that influence the adoption of LBA. According to PCM, consumers are engaged in a dynamic adjustment process in which privacy risks are weighted against benefits of information disclosure. Consistent with the principal notion of PCM, we investigated how individual users make a risk-benefit assessment under which personalized service and locatability act as benefit-side factors and information privacy risks act as a risk-side factor accompanying LBA adoption. In addition, we consider the moderating role of trust on the service providers in the prohibiting effects of privacy risks on user intention to adopt LBA. Further we include perceived ease of use and usefulness as additional constructs to examine whether the technology acceptance model (TAM) can be applied in the context of LBA adoption. The research model with ten (10) hypotheses was tested using data gathered from 98 respondents through a quasi-experimental survey method. During the survey, each participant was asked to navigate the website where the experimental simulation of a LBA allows the participant to purchase time-and-location sensitive discounted tickets for nearby stores. Structural equations modeling using partial least square validated the instrument and the proposed model. The results showed that six (6) out of ten (10) hypotheses were supported. On the subject of the core PCM, H2 (locatability ${\rightarrow}$ intention to use LBA) and H3 (privacy risks ${\rightarrow}$ intention to use LBA) were supported, while H1 (personalization ${\rightarrow}$ intention to use LBA) was not supported. Further, we could not any interaction effects (personalization X privacy risks, H4 & locatability X privacy risks, H5) on the intention to use LBA. In terms of privacy risks and trust, as mentioned above we found the significant negative influence from privacy risks on intention to use (H3), but positive influence from trust, which supported H6 (trust ${\rightarrow}$ intention to use LBA). The moderating effect of trust on the negative relationship between privacy risks and intention to use LBA was tested and confirmed by supporting H7 (privacy risks X trust ${\rightarrow}$ intention to use LBA). The two hypotheses regarding to the TAM, including H8 (perceived ease of use ${\rightarrow}$ perceived usefulness) and H9 (perceived ease of use ${\rightarrow}$ intention to use LBA) were supported; however, H10 (perceived effectiveness ${\rightarrow}$ intention to use LBA) was not supported. Results of this study offer the following key findings and implications. First the application of PCM was found to be a good analysis framework in the context of LBA adoption. Many of the hypotheses in the model were confirmed and the high value of $R^2$ (i.,e., 51%) indicated a good fit of the model. In particular, locatability and privacy risks are found to be the appropriate PCM-based antecedent variables. Second, the existence of moderating effect of trust on service provider suggests that the same marginal change in the level of privacy risks may differentially influence the intention to use LBA. That is, while the privacy risks increasingly become important social issues and will negatively influence the intention to use LBA, it is critical for LBA providers to build consumer trust and confidence to successfully mitigate this negative impact. Lastly, we could not find sufficient evidence that the intention to use LBA is influenced by perceived usefulness, which has been very well supported in most previous TAM research. This may suggest that more future research should examine the validity of applying TAM and further extend or modify it in the context of LBA or other similar smartphone apps.

  • PDF

온라인 구전정보 수용자의 지각된 정보유용성과 자기효능감이 구전정보 수용의도에 미치는 영향에 관한 연구: 의견고수와 구전수용의 비교 (Investigating the Influence of Perceived Usefulness and Self-Efficacy on Online WOM Adoption Based on Cognitive Dissonance Theory: Stick to Your Own Preference VS. Follow What Others Said)

  • 이정현;박주석;김현모;박재홍
    • Asia pacific journal of information systems
    • /
    • 제23권3호
    • /
    • pp.131-154
    • /
    • 2013
  • New internet technologies have created a revolutionary new platform which allows consumers to make decision about product price and quality quickly and provides information about themselves through the transcript of online reviews. By expressing their feelings toward products or services on virtual opinion platforms, users extend their influence into cyberspace as electronic word-of-mouth (e-WOM). Existing research indicates that an impact of eWOM on the consumer decision process is influential. For both academic researchers and practitioners, investigating this phenomenon of information sharing in online website is essential given the increasing number of consumers using them as sources of purchase decisions. It is worthwhile to examine the extent to which opinion seekers are willing to accept and adopt online reviews and which factors encourage adoption. Discerning the most motivating aspects of information adoption in particular, could help electronic marketers better promote their brand and presence on the internet. The objectives of this study are to investigate how online WOM influences a persons' purchase decision by discovering which factors encourage information adoption. Especially focused on the self-efficacy, this research investigates how self-efficacy affects on information usefulness and adoption of online information. Although people are exposed to same review or comment about product or service, some accept the reviews while others do not. We notice that accepting online reviews mainly depends on the person's preference or personal characteristics. This study empirically examines this issue by using cognitive dissonance theory. Specifically, in the movie industry, we address few questions-is always positive WOM generating positive effect? What if the movie isn't the person's favorite genre? What if the person who is very self-assertive so doesn't take other's opinion easily? In these cases of cognitive dissonance, is always WOM generating same result? While many studies have focused on one direct of WOM which indicates positive (or negative) informative reviews or comments generate positive (or negative) results and more (or less) profits, this study investigates not only directional properties of WOM but also how people change their opinion towards product or service positive to negative, negative to positive through the online WOM. An experiment was conducted quantitatively by using a sample of 168 users who have experience within the online movie review site, 'Naver Movie'. Users were required to complete a survey regarding reviews and comments taken from the real movie page. The data reflected user's perceptions of online WOM information that determined users' adoption level. Analysis results provide empirical support for the proposed theoretical perspective. When user can't agree with the opinion of online WOM information, in other words, when cognitive dissonance between online WOM information and users' preference occurs, perceived self-efficacy significantly decreases customers' perception of usefulness. And this perception of usefulness plays an important role in determining users' intention to adopt online WOM information. Most of researches have been concentrated on characteristics of online WOM itself such as quality or vividness of information, credibility of source and direction of online WOM, etc. for describing effect of online WOM, but our results suggest that users' personal character (e.g., self-efficacy) plays decisive role for acceptance of online WOM information. Higher self-efficacy means lower possibility to accept the information that represents counter opinion because of cognitive dissonance, whereas the people that have lower self-efficacy are willing to accept the online WOM information as true and refer to purchase decision. This study suggests a model for understanding role of direction of online WOM information. Also, our result implicates the importance of online review supervision and personalized information service by confirming switching opinion negative to positive is more difficult than positive to negative through the online WOM information. This implication would help marketers to manage online reviews of their products or services.