Customization and personalization services are considered as a critical success factor to be a successful Internet store or web service provider. As a representative personalization technique, personalized recommendation techniques are studied and commercialized to suggest products or services to a customer of Internet storefronts based on demographics of the customer or based on an analysis of the past purchasing behavior of the customer. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customers data. however, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed knowledge base. In this paper, we proposed a marketing rule extraction technique for personalized recommendation on Internet storefronts using market basket analysis technique, a well-known data mining technique. Using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store. An experiment has been performed to evaluate the effectiveness of proposed approach comparing with preference scoring approach and random selection.
Useful emails influence on consumers' purchase behavior and activate them to visit retail stores. Regular contact with consumers by e-mail has positive effects on brand loyalty. However, email marketing has a limitation. Spam now accounts for over half of all e-mail traffic. The increase of email users has resulted in the dramatic increase of spam emails during the past few years. In this paper, we proposed an ontology-based system offering personalized email services to overcome such limitation. Our method is not the ontology-driven spam filtering, but a personalized content service considering personal interests and relations among people by using FOAF and domain ontologies. Our system was successfully tested in email marketing domain.
This paper presents research result of digital marketing model for improving enterprise marketing campaign performance. Recently, the enterprises which had completed projects such as ERP, CRM, and SCM for business value chain process transformation are working to improve enterprise marketing process. It is the trend for enterprises to use digital marketing tactics to overcome the limit of existing traditional marketing tactics. Especially, enterprises try to adopt digital marketing for marketing campaign performance. In this paper, digital marketing research model and hypothesis were established and statistically analyzed by marketing expert survey research. The research finding is that Web Analytics, Social Analytics, Personalized CRM, Campaign execution automation, Real-Time campaign management can be core influencers for marketing campaign performance improvement.
One to one Marketing (a.k.a. database marketing or relationship marketing) is one of the many fields that will benefit from the electronic revolution and shifts in consumer sales and advertising. As a component of intelligent customer services on Internet storefront, this paper describes technology of providing personalized advertisement using the market basket analysis, a well-Known data mining technique. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customer's data. However, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed Knowledge base. In this paper, using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store.
In personalized marketing, it is important to maximize customer satisfaction and marketing efficiency. As personalized campaigns are frequently performed, several campaigns are frequently run simultaneously. The multiple recommendation problem occurs when we perform several personalized campaigns simultaneously. This implies that some customers may be bombarded with a considerable number of campaigns. We raise this issue and formulate the multi-campaign assignment problem to solve the issue. We propose dynamic programming method and various heuristic algorithms for solving the problem. With field data, we also present experimental results to verify the importance of the problem formulation and the effectiveness of the proposed algorithms.
This study was conducted from May 10th to 30th, 2023 to confirm the relationship between advertisement irritation, privacy concerns, personalized marketing, and social influence of brand customized advertisements on advertisement avoidance and brand loyalty targeting the MZ generation. The following results were verified using the SPSS 28.0 and Smart PLS 4.0 programs for a valid survey of 400 people targeting the MZ generation nationwide on a daily basis. First, advertisement irritation had a positive (+) effect on advertisement avoidance but had no effect on brand loyalty, and personalized marketing had a positive (+) effect on advertisement avoidance but had no effect on brand loyalty. Second, concerns about personal information had a positive (+) effect on avoidance of advertisements and brand loyalty. Third, social influence had a positive (+) effect on advertisement avoidance and brand loyalty. Fourth, advertisement avoidance played a significant mediating role between advertisement irritation and brand avoidance, but did not play a significant mediating role between personalized marketing and social influence. Based on these results, this study is meaningful in that it can be used as basic data for research on advertising avoidance and brand loyalty and for establishing strategies necessary for brand marketing activities.
Since the increasing use of smart devices such as smartphone and tablet PC improves the quality of convergence of broadcasting and telecommunication, many new media have been created. This smart device can provide personal environments based on user's profile (age, gender, and job) and current location. In addition, it can be regarded as a media platform with two-way communication. This paper proposes personalized message syndication, called PMS, based on smart devices and then analyzes its business and technical issues. The PMS service as a smart media provides consumers customized information and can be used for producer's marketing tools which can lead consumers' heart and participation.
In a smart commerce market, customers are seeking customized shopping services optimized for personal tastes and customized shopping experiences based on customers' tastes. Accordingly, individually customized services are needed more than anytime now. According to this demand, companies provide messaging services to the consumer, but do not include a personalized service for each individual. The purpose of this study is to combine the techniques of personalized services with messaging services and presents system construction plan and integrated model system for corporate messaging services and thereby possible are maximizing marketing effects and analyzing effects of cost savings. Applying the operation of the integrated model is proposed and message transmission scheme through effective personalization can be applied to personalized model using the personalized information according to customers' requirements. The integrated model of personalization on this study is expected to be highly effective when combined with the search service.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.93-97
/
2002
In this paper, we propose personalized recommendation techniques based on multidimensional scaling (MDS) method for Business to Consumer Electronic Commerce. The multidimensional scaling method is traditionally used in marketing domain for analyzing customers' perceptional differences about brands and products. In this study, using purchase history data, customers in learning dataset are assigned to specific product categories, and after then using MDS a positioning map is generated to map product categories and alternative advertisements. The positioning map will be used to select personalized advertisement in real time situation. In this paper, we suggest the detail design of personalized recommendation method using MDS and compare with other approaches (random approach, collaborative filtering, and TOP3 approach)
In the beginning of the Web history, the main function and importance of the Internet was focused on the content of the data. However, that focus has been switched to the search engines because of the abundant, humongous amount of data that are spread all over the globe. The Webmasters are now implying flasy, beautiful graphics and newly developed technologies to make their websites attract the Internet users. The significant change was mainly caused by the companies that thought cyber shopping malls were going to be very simple and profitable. They believed that the decreasing prices of hardware and easy-to-use software were going to attract the potential customers, resulting in a new, massive market. A website needs to be extremely captivating and attractive, in order to bring in new customers and induce them to return. The Webmaster has to devise methods to find out what kinds of contents would bring in a bigger audience, as well as checking the validity and correctness of the contents. In the thesis, the necessity and concept of a personalized Internet shopping mall will be discussed through the theoretical examination of the one-to-one marketing and the concept of the current shopping malls. The scheme of the personalized shopping mall will be presented, which will encourage the formation of loyal customers, in the ever-growing competitiveness of the marketing environment, by satisfying their wants faster and more precisely.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.