• 제목/요약/키워드: Personalization recommendation

검색결과 127건 처리시간 0.023초

협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법 ((Efficient Methods for Combining User and Article Models for Collaborative Recommendation))

  • 도영아;김종수;류정우;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.540-549
    • /
    • 2003
  • 협력적 추천에서는 일반적으로 사용자 모델과 항목 모델이 사용되어진다. 사용자 모델은 사용자들간의 선호도 상관관계를 학습하고, 추천하고자 하는 항목에 대한 다른 사용자들의 선호도를 기반으로 그 항목을 추천한다. 이와 유사한 방식으로 항목 모델은 항목들간의 선호도 상관관계를 학습하고, 다른 항목들간의 선호도를 기반으로 추천 받는 사용자에게 항목을 추천한다. 본 논문에서는 추천 성능의 향상을 위해서 사용자 모델과 항목 모델간의 다양한 통합 방법을 제안한다. 제안하는 통합 방법으로는 순차적, 병렬적 통합 방법, 퍼셉트론 또는 다층 퍼셉트론을 이용한 통합 방법, 퍼지 규칙을 이용한 통합 방법 그리고 BKS를 적용한 방법이다. 본 실험에서는 통합 모델을 위해서 다층 퍼셉트론을 이용하여 사용자와 항목 모델을 각각 학습한다. 다층 퍼셉트론은 최근접 이웃방법이나 연관 규칙을 이용한 방법과 같은 기존의 추천 방법보다 연관된 항목들간의 가중치를 학습할 수 있고, 기호 데이타와 수치 데이타를 쉽게 처리할 수 있는 장점이 있다. 본 논문에서는 통합된 모델이 어떠한 단일 모델보다도 우수하고, 실험을 통하여 다층 퍼셉트론을 이용한 통합 방법이 다른 통합 방법보다 효율적인 통합 방법임을 보여주고 있다.

E-Commerce 포탈에서 향상된 개인화 추천 기법 (An Improved Personalized Recommendation Technique for E-Commerce Portal)

  • 고평관;;김영국;강상길
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권9호
    • /
    • pp.835-840
    • /
    • 2008
  • 본 논문에서는 고객의 다양한 행동 분석을 통해 e-commerce 포탈에서 향상된 개인화 기법을 제안한다. 고객의 행동은 "상품 구매" '장바구니에 상품 추가", "상품 정보 확인" 세가지로 구분하였다. 추천된 상품에 대한 평점을 측정하기 위해 사용자의 행동을 암묵적으로 추적한다. 제안하는 추천 기법은 Cross Correlation Coefficient를 변형하여 비슷한 선호도를 가진 고객들을 분류한 후 대상 고객이 선호하는 상품과 비슷한 선호도를 가진 고객들의 상품 유사도를 측정한다. 본 시스템의 가장 주목할만한 특징은 고객의 행동을 바탕으로 상품에 대한 평점을 암묵적으로 계산하는 것이다. 상품의 선호도에 대하여 고객의 직접적인 대답을 요구하면 고객들이 불편함을 느낄 수 있기 때문에 고객의 행동을 통하여 상품에 대한 선호도를 반영한다. 실험결과 부분에서 우리의 시스템과 협업 필터링을 기반으로 한 다른 기법의 비교를 통하여 각 기법들의 장단점을 보일 것이다.

멀티미디어 콘텐츠를 위한 이용빈도 기반 하이브리드 추천시스템에 관한 연구 (A Study on Hybrid Recommendation System Based on Usage frequency for Multimedia Contents)

  • 김용;문성빈
    • 정보관리학회지
    • /
    • 제23권3호
    • /
    • pp.91-125
    • /
    • 2006
  • 정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가로 인하여 정보과잉에 따른 적절한 정보의 선택이 필요하게 되었다. 이를 위하여 이용자가 정보를 효율적으로 이용할 수 있도록 검색 또는 여과하는 일을 수행하기 위하여 정보검색 및 정보여과 시스템이 등장하게 되었다. 이러한 일련의 정보환경의 변화에 대한 보다 적극적인 대응방법으로서 도서관 및 정보센터에서는 이용자가 원하는 정보를 정확하고 효율적으로 제공하기 위한 노력의 일환으로서 이용자에게 맞춤화된 정보 추천서비스 제공이 요구된다. 본 연구에서는 도서관 및 정보센터에서 적극적인 정보서비스를 위한 방법으로 이용자에게 맞춤화된 정보를 제공할 수 있는 개인화 추천시스템을 구축하기 위한 방안을 제안하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로서 대용량 콘텐츠 및 이용자 환경에서 이용자의 콘텐츠 이용빈도를 기준으로 멀티미디어 콘텐츠를 위한 개인화된 하이브리드 추천방법을 제안하였다. 이를 위하여 이용빈도에 있어서 상위 이용자 및 콘텐츠를 분리하고 적절한 추천방법에 적용하기 위한 새로운 형태의 추천방법 및 대용량 추천시스템에 적합한 연관규칙과 협업여과방법에 대한 조합방법을 제안하였다.

사례기반추론 기법을 이용한 개인화된 추천시스템 설계 및 구현 (Design and Implementation of personalized recommendation system using Case-based Reasoning Technique)

  • 김영지;문현정;옥수호;우용태
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.1009-1016
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 묵시적인 평가정보를 이용한 새로운 사례기반 추천시스템을 설계하고 구현하였다. 본 시스템은 크게 사용자 프로파일 생성 모듈, 유사도 계산 및 추천 모듈, 개인화된 메일링 모듈로 구성된다. 사용자 프로파일 생성 모듈에서는 사용자가 컨텐츠를 이용하면서 남긴 로그 기록을 이용하여 컨텐츠에 대한 개인별 선호도를 추출할 수 있는 속성내, 속성간 가중치를 제시하였다. 유사도 계산 및 추천 모듈에서는 사용자 프로파일과 새로운 컨텐츠간의 유사도를 측정하기 위한 유사도 계산식을 제시하였다. 개인화된 메일링 모듈에서는 개인별 선호도에 의해 구성된 추천 컨텐츠를 플렛폼-독립적인 XML 문서 형식으로 변환하여 발송한다. 제안된 모델에 대한 추천 효율을 검증하기 위해 평균절대오차(MAE)와 반응자작용특성(ROC) 값을 이용하여 제안한 추천 모델과 협동적 필터링 기법과 비교 실험하였다. 실험결과, 본 논문에서 제안한 모델의 추천 효율이 기존의 협동적 필터링 기법보다 우수함을 보였다.

사용자의 시공간 컨텍스트를 이용한 모바일 앱 추천 (Mobile App Recommendation using User's Spatio-Temporal Context)

  • 강영길;황세영;박상원;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권9호
    • /
    • pp.615-620
    • /
    • 2013
  • 스마트폰을 통해 사용자에게 제공되는 앱이 증가함에 따라 사용자들은 스마트폰에서 자신이 사용하고자 하는 앱을 매번 찾아야 하는 문제점이 커지고 있다. 이러한 앱 탐색 문제를 해결하기 위해 본 연구에서는 스마트폰에서 시간 및 장소에 따른 사용자별 앱 사용 로그를 수집하고, 이를 학습하여 사용자의 상황 정보에 따라 최적의 앱 추천 리스트를 자동으로 제공하는 방법을 제안한다. 제안 방법에서는 사용자의 앱 로그로부터 요일, 시간대, 주중주말 여부 등의 시간 속성과 주소명, POI 등의 장소 속성을 학습하여 최대사용빈도기반 예측 모델, Naive-Bayesian 예측 모델, SVM 예측 모델 등의 3가지 예측 모델을 생성한다. 최적의 예측 모델을 생성하기 위해 다양하게 조합된 학습 속성들을 학습한 예측모델들의 추천 정확도 비교 실험을 진행하였으며, 단일 예측 모델의 성능 개선을 위한 하이브리드 추천 방법을 제안한다.

시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템 (Contents Recommendation Search System using Personalized Profile on Semantic Web)

  • 송창우;김종훈;정경용;류중경;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.318-327
    • /
    • 2008
  • 정보기술의 발전과 인터넷 사용의 증가로 이용가능한 정보들의 양이 폭발적으로 증가한다. 콘텐츠 추천 시스템은 사용자가 원하지 않는 정보를 필터링하고 유용한 정보를 추천하는 서비스를 제공한다. 기존의 추천 시스템은 데이터마이닝 기법으로 웹 접속 기록 및 유형과 사용자가 요구하는 정보를 서비스 제공자 측면에서 분석하여 콘텐츠를 제공한다. 사용자의 선호도와 생활패턴 등의 사용자 측면에서의 정보들의 표현이 어려웠기 때문에 제한된 서비스를 제공할 수 밖에 없었다. 시맨틱 웹 기술은 이미지, 문서 등의 모든 객체를 대상으로 목적에 맞는 정보를 수집, 가공, 응용할 수 있도록 데이터 간에 잘 정의된 의미 있는 관계를 만들 수 있다. 본 논문에서는 시맨틱 웹 환경에서 개인화 프로파일을 동적으로 갱신하여 반영할 수 있는 콘텐츠 추천 검색 시스템을 제안한다. 개인화 프로파일은 프로파일의 특징을 담고 있는 컬렉터, 다양한 컬렉터들로부터 프로파일을 수집하는 수집기, 프로파일 특성에 기반한 고유의 프로파일 컬렉터를 해석하는 해석기로 구성된다. 개인화 모듈은 콘텐츠 추천 서버에서 개인화 프로파일과 주기적으로 동기화할 수 있도록 도와준다. 추천 콘텐츠로 음악을 선택하여 서비스 시나리오에 따라 개인화 프로파일이 콘텐츠 추천 서버에 전달되어 사용자의 선호도와 생활패턴이 반영된 추천리스트를 제공하는지 실험한다.

내재적 신뢰가 강화된 협업필터링을 이용한 추천시스템 (Recommender System using Implicit Trust-enhanced Collaborative Filtering)

  • 김경재;김영태
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.1-10
    • /
    • 2013
  • 개인화는 개인적인 기호를 바탕으로 각 사용자에게 맞춤화된 컨텐츠를 제공하는 것을 목표로 한다. 이러한 관점에서, 개인화의 핵심적인 부분은 각 사용자의 기호에 적합한 컨텐츠나 상품을 추천할 수 있는 추천기술이라 할 수 있다. 선행연구들은 추천시스템의 중요성을 인지하고 새로운 추천기술을 제안하여 왔다. 여러 추천기술들 중에서 협업필터링은 실무에서 활발하게 연구되고 활용되어 왔다. 그러나, 협업필터링은 종종 희박성 또는 확장성 문제를 겪게 된다. 선행연구들 역시 이 두 가지 문제점의 중요성을 인지하고 그에 대한 여러 가지 해결방안들을 제안하였다. 하지만, 여러 선행연구들은 기존의 사용자-상품 매트릭스 외에 다른 원천들로부터 생성된 추가적인 정보를 이용함으로써 문제점들을 해결하려 함으로 인하여 추가적인 시간과 비용을 요하는 다른 문제를 야기하였다. 본 연구에서는 희박성 문제를 완화하고 추천시스템의 성능을 개선하기 위하여 협업필터링을 위한 새로운 내재적 평가방법을 제안한다. 즉, 본 연구에서는 기존 사용자-상품 매트릭스를 이용하여 사용자 간의 신뢰수준을 측정할 수 있는 내재적 평가법에 기반한 사용자-상품 매트릭스의 보완을 통해 희박성 문제를 완화할 수 있는 방안을 제안한다. 또한, 본 연구에서는 제안하는 방안의 유용성을 평가하기 위한 탐색적 실험 결과를 제공한다.

개인화된 방송 컨텐츠 추천을 위한 가중치 적용 Markov 모델 (Weighted Markov Model for Recommending Personalized Broadcasting Contents)

  • 박성준;홍종규;강상길;김영국
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권5호
    • /
    • pp.326-338
    • /
    • 2006
  • 본 논문에서는 시간에 따라 다양한 컨텐츠를 제공하는 방송 환경에서 고객의 최근 시청 정보를 이용하여 바로 다음에 고객이 시청하기를 선호하는 컨텐츠를 추천하기 위한 방법으로 가중치 지용 Markov 모델을 제안한다. 일반적으로 TV 시청자들은 최근에 시청한 자신이 선호하는 컨텐츠를 다시 시청하는 성향이 있다. 본 논문에서 제안하는 가중치 적용 Markov 모델은 TV 시청자들의 이와 같은 성향을 고려하여 고객이 연속적으로 시청한 정도에 따라 컨텐츠 선호도 전이 행렬에 가중치를 적용한다. 제안된 모델의 실험을 위해 고객으로부터 수집된 TV 시청 정보를 이용하여 고객의 선호 장르를 추천하는데 제안 모델을 적용하였다. 실험 결과 제안된 방법이 기존 방법에 비해 추천의 정확도가 향상되었음을 보인다.

Method of Profile Storage for Improving Accuracy and Searching Time on Ubiquitous Computing

  • Jang, Chang-Bok;Lee, Joon-Dong;Lee, Moo-Hun;Cho, Sung-Hoon;Choi, Eui-In
    • 한국멀티미디어학회논문지
    • /
    • 제9권12호
    • /
    • pp.1709-1718
    • /
    • 2006
  • Users are able to use the information and service more free than previous wire network due to development of wireless network and device. For this reason, various studies on ubiquitous networks have been conducted. Various contexts brought in this ubiquitous environment, have recognized user's action through sensors. This results in the provision of better services. Because services exist in various places in ubiquitous networks, the application has the time of services searching. In addition, user's context is very dynamic, so a method needs to be found to recommend services to user by context. Therefore, techniques for reducing the time of service and increasing accuracy of recommendation are being studied. But it is difficult to quickly and appropriately provide large numbers of services, because only basic context information is stored. For this reason, we suggest DUPS(Dimension User Profile System), which stores location, time, and frequency information of often used services. Because previous technique used to simple information for recommending service without predicting services which is going to use on future, we can provide better service, and improve accuracy over previous techniques.

  • PDF

TV프로그램을 위한 내용기반 추천 시스템 (A Content-based TV Program Recommender)

  • 유상원;이홍래;이형동;김형주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권6호
    • /
    • pp.683-692
    • /
    • 2003
  • 인터넷에 이어 TV환경에서도 넘쳐나는 정보로 인해 시청자들이 원하는 정보를 얻는데 어려움을 겪게 되는 상황이 발생하고 있다. 최근 들어 디지털 방송시대가 열리면서 국내에서도 선택 가능한 채널이 세 자리 수까지 늘어나게 되어 기존의 방법으로는 채널 선택이 곤란하게 되었다. 본 논문은 이러한 문제점의 해결을 위한 TV프로그램 추천 시스템의 프로토타입을 제안한다. 본 논문에서는 TV환경에 알맞은 사용자 정보를 모델링하고 내용기반 방식을 이용하여 추천 시스템의 각 모듈을 설계하였다. 우리의 시스템은 사용자의 기본 정보를 입력받은 후 사용자의 시청 및 사용기록을 추적하여 자동으로 선호도를 파악하고 날짜별로 프로그램을 추천한다. 본 논문은 TV 프로그램 추천이 가지는 문제와 이에 대한 접근 방법을 시스템의 구조에 대한 설명과 실험을 통해 밝힌다.