• 제목/요약/키워드: Personalization recommendation

검색결과 127건 처리시간 0.023초

e-멘토링 시스템에서 매칭을 위한 개인선호도기반 멘토/멘티 추천 알고리즘 (Personalized Mentor/Mentee Recommendation Algorithms for Matching in e-Mentoring Systems)

  • 진희란;박찬정
    • 컴퓨터교육학회논문지
    • /
    • 제11권1호
    • /
    • pp.11-21
    • /
    • 2008
  • 지식정보화시대가 시작되면서 멘토링은 인재 발굴 및 관리를 위한 효율적인 방법으로 인식되고 있다. 멘토링 효과를 높이기 위한 요소는 여러 가지이다. 그 중 멘토와 멘티를 매칭하는 요소는 멘토링 시스템에서 핵심이라 할 수 있다. 기존 e-멘토링 시스템의 매칭은 대부분 개인 정보를 충분히 활용하지 못하고 관리자에 의해 일괄적으로 처리되는데, 이는 멘토링 효과에 부정적인 영향을 미칠 수 있다. 본 논문에서는 중 고등학생을 대상으로 개인선호도를 입력받아 매칭 항목으로 결정하고 이를 기반으로 가장 적절한 멘토/멘티를 매칭시키는 개인선호도기반의 멘토/멘티 추천 알고리즘을 제안한다. 또한, 본 논문에서는 기존의 알고리즘과 함께 제안한 알고리즘을 정교성, 일치성, 다양성 측면에서 분석하여 제안한 알고리즘의 효율성을 증명한다.

  • PDF

소셜 네트워크 데이터베이스를 이용한 퍼지 결정 기반의 추천 채널 시스템 (Fuzzy Decision Making-based Recommendation Channel System using the Social Network Database)

  • ;박상현;장종현;박재형;김진술
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권5호
    • /
    • pp.307-316
    • /
    • 2016
  • 사용자는 일반적으로 멀티미디어 소셜 서비스로부터 다른 사람들과 같은 결과를 제공받는다. 따라서 소셜 네트워크 안에 개인의 어려운 문제를 해결하기 위해 본 논문에서는 의사 결정 시스템 구축을 사용자의 활동, 사용자의 기분과 소셜 네트워크를 통한 사용자의 친구 관계 정보를 활용하는 방법을 제안한다. 사용자의 현재 기분 상태에 따라 시스템은 사용자에게 가장 적합한 영상을 유추한다. 이 시스템은 사용자가 이용하는 소셜 네트워크 데이터베이스에서 추출한 추천 방법의 집합을 측정하고, 가중치에 따라 모호한 값이 각각의 방법에 할당한다. 본 논문에 시스템에서는 퍼지 수집 솔루션을 찾아서 하위 집합들로 방법들을 분류하고, 가장 적절한 방법을 선택하기 위해 퍼지로직을 기반으로 상기 하위 집합을 결정한다. 마지막으로, YouTube API와 다양한 영상을 이용하여 시뮬레이션 실험을 진행하였다. 이 실험에서 채널 추천 시스템은 사용자 특성에 맞는 적절한 결과를 보여주며, 이것은 여러 사용자의 평가에 기반하는 현재 유투브 보다 더 좋은 만족감을 준다.

연관규칙을 활용한 학교도서관 도서추천시스템 개발에 관한 연구 (A Study on the Development of the School Library Book Recommendation System Using the Association Rule)

  • 임정훈;조창제;김종헌
    • 정보관리학회지
    • /
    • 제39권3호
    • /
    • pp.1-22
    • /
    • 2022
  • 본 연구는 학교도서관에서 활용할 수 있는 도서추천시스템을 제안하는데 목적이 있다. 도서추천시스템은 DLS의 대출 데이터를 활용하여 연관규칙 기반의 알고리즘을 적용하였으며, 학교도서관 이용자들에게 개인화 도서추천 서비스 제공이 가능하도록 설계하였다. 이를 위해 Apriori 알고리즘 기반의 연관규칙과 매개 중심성 분석을 적용하고, 기술통계, 연관규칙 생성, 학생중심 추천, 도서 중심추천 등 세부 기능을 구현하였다. 이어서 사서교사를 대상으로 심층면담을 통해 도서추천시스템 사용에 대한 의견을 조사하였다. 조사 결과, 도서추천의 필요성 및 어려움, 학생의 반응, 기존 추천방식과의 차이점 및 활용방안, 개선 사항에 대한 의견을 확인할 수 있었으며, 이를 토대로 다음의 논의점을 제안하였다. 첫째, 개별학교의 특성을 파악하기 위해서 장기간의 대출 데이터의 제공이 필요하다. 둘째, 지역별 혹은 학교 특성별 데이터 통합 방안에 대한 논의가 필요하다. 셋째, 독서교육종합시스템에서 제공하는 도서추천시스템의 구축이 필요하다. 본 연구에서 제안된 내용을 토대로 향후 학교도서관 현장에서 활용할 수 있는 개인화 추천시스템 적용에 대한 다양한 논의가 이루어지길 기대한다.

유비쿼터스 상거래 환경의 컨텍스트 기반 점진적 선호 분석 기법 (Context-based Incremental Preference Analysis Method in Ubiquitous Commerce)

  • 구미숙;황정희;최남규;정두영;류근호
    • 정보처리학회논문지D
    • /
    • 제11D권7호
    • /
    • pp.1417-1426
    • /
    • 2004
  • 유비쿼터스 상거래의 도래에 따라 개인화된 서비스에 대한 관심이 높아지고 있고, 고객이 관심을 갖는 상품에 대한 정보를 제공하기 위해 추천 기법의 중요성은 지금까지의 많은 연구들을 통해 제시되고 있다. 그러나 기존 연구에서는 대부분 특징 기법에 의존적이고 전자 상거래에만 국한되어 적용될 수 있었다. 이러한 추천 기법을 유비쿼터스 상거래에 적용하기 위해서는 고객의 상황 또는 환경에 대한 정보 즉, 컨텍스트에 대한 확정된 도메인의 모델링과 각 추천 기법들의 상거래 활성화 단계별 장단점을 보완하기 위한 유기적 연계가 필요하다. 따라서 이 연구에서는 이러한 문제를 해결하기 위해 유비쿼터스 상거래에서 개인의 상거래 활동에 관련된 컨텍스트 정보를 모델링하고, 상거래 활성화 단계에 따라 상이한 특성을 갖는 각 추천 기법을 선호도 트리를 매개로 하여 연계하는 점진적 선호 분석 방법을 제시한다. 그리고 이러한 분석 과정을 통해 생성된 선호도 트리에서 정보를 효율적으로 처리하기 위해 XML 인텍스 기법을 적용한다.

프로그래밍 언어 학습지원 추천시스템 (The Recommendation System for Programming Language Learning Support)

  • 김경아;문남미
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문에서는 프로그래밍 언어 교육을 위한 자기주도 학습지원 추천시스템을 제안한다. 이 시스템은 학습자의 수준별 단계별 프로그래밍 학습을 지원하기 위해 협업필터링을 이용한 추천시스템이다. 본 연구에서는 이러닝 환경에서 학습자가 자신의 학습단계에 필요한 학습과정을 계획하고 학습하는 과정에서 자기주도적 학습효과를 높일 수 있도록 학습주제별 학습수준 기반 학습자 프로파일과 학습주제사이의 연관성 프로파일을 이용한 협업 필터링을 사용하여 프로그래밍 언어 학습지원 추천시스템을 설계하였다. 이 시스템은 이러닝 환경에서 제공되는 프로그래밍 언어 학습 시스템이 자기주도적 학습을 지원하는데 발생하는 가장 큰 어려움인 문제 해결 능력 향상에 기반한 프로그래밍 문제 제공의 어려움을 해결할 수 있는 방법을 제시하여 기존 시스템들이 가지고 있는 문제점을 해결하고자 하였다. 그 결과 프로그래밍 언어 교육 과정에서 발생하는 수준별 단계별 학습에 맞는 프로그래밍 문제 제공의 어려움을 해결하고, 학습자의 자기주도적 학습을 유도하는 학습자 중심의 교수 학습 방법에 기반을 둔 이러닝 학습 환경을 제공함으로써 학습의 질을 높일 수 있는 방안을 제시할 수 있다는 데에 본 연구의 의의가 있다고 할 수 있다.

특성 유사도 기반 앱 추천 (App Recommendation Based on Characteristic Similarity)

  • 김형일
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권4호
    • /
    • pp.559-565
    • /
    • 2012
  • 정보통신의 발달로 스마트폰은 대중화를 이루었으며, 스마트폰의 대중화는 앱스토어라는 새로운 영역을 생성하였다. 스마트폰에서 사용되는 응용소프트웨어인 앱은 앱스토어를 통해 편리하게 거래될 수 있다는 장점으로 빠른 성장을 이루었다. 앱스토어에서 거래되는 앱들의 수량이 방대해짐에 따라 사용자가 원하는 앱을 정확히 추출하기란 매우 어렵다. 앱스토어에서 사용하는 일반적인 앱 추천 방식은 사용자가 입력한 질의어에 따라 앱을 추천하는 방식이다. 이러한 내용 기반 방식은 디지털 형태로 이루어진 앱을 추천할 때는 효과적인 기법이 아니다. 앱 추천의 정확성을 높이기 위해 본 논문에서는 특성 유사도 기반 앱 추천 기법을 제안한다. 본 논문에서 제안한 기법은 앱의 장르, 기능성, 다운로드 수 등을 이용하여 앱에 대한 속성을 생성한 후, 사용자의 앱 사용에 대한 성향과 비교하여 앱을 추천하는 방식을 따른다. 다양한 실험에서 본 논문에서 제안한 기법이 기본적인 앱 추출 기법보다 평균 33%의 성능 향상을 보였다.

모바일 환경에서 상황정보를 이용한 하이브리드 필터링 추천시스템 설계 (Development of Hybrid Filtering Recommendation System using Context-Information in Mobile Environments)

  • 고정민;남두희
    • 한국ITS학회 논문지
    • /
    • 제10권3호
    • /
    • pp.95-100
    • /
    • 2011
  • 정보통신 기술의 급속한 성장 및 발전에 따라 유비쿼터스 네트워크 컴퓨팅 및 이용자 맞춤 서비스에 대한 관심이 증폭되고 있다. 또한 최근 스마트폰(Smartphone)을 매개체로 모바일 관련 기술들이 급속도로 발전하며 큰 각광을 받고 있다. 이러한 환경 및 인프라의 발전에 따라 최근 모바일에서 각 종 정보 및 서비스를 제공하는 다양한 응용소프트웨어들이 출시되고 있는 추세이나 그 대부분이 공급자 위주의 정보시스템으로 단순히 다량의 정보들을 불특정 다수의 이용자들에게 제공하는데 목적을 두고 있으며 이용자 개개인에 대한 맞춤화 혹은 개인화된 정보 및 서비스의 제공은 거의 이루어지지 않고 있다. 이에 따라 본 연구에서는 모바일환경에서 개인화 및 맞춤화를 위한 추천시스템을 설계 및 구현 한다. 각 종 정보필터링 기법의 장점만을 결합한 하이브리드 필터링(Hybrid Filtering)을 이용하여 추천 시스템을 구성하며 추천의 질을 향상시키기 위해 정보 필터링 단계에 앞서 사용자의 목적행위, 위치의 상황정보(Context-information)를 이용하여 추천대상 아이템의 범위를 결정함으로써 이용자 상황에 따른 효과적인 정보의 추천을 가능하도록 한다.

Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구 (A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm)

  • 김용
    • 한국비블리아학회지
    • /
    • 제23권4호
    • /
    • pp.283-308
    • /
    • 2012
  • 정보기술과 인터넷의 발전에 따른 정보의 폭발적인 증가와 함께, 이용자에게 있어서 적합한 정보의 획득을 위한 방법이 절실하게 요구되고 있다. 이를 위하여 정보검색 및 여과시스템이 개발 및 발전되어 왔다. 또한 보다 적극적인 서비스를 제공하기 위한 방법으로써 개인화 정보추천서비스에 대한 요구가 높아지고 있다. 본 연구에서는 도서관에서 적극적인 정보서비스를 위한 방법으로 이용자의 관심과 선호도에 적합한 정보를 제공하기 위한 연관규칙 기반의 개인화 정보추천시스템을 설계 및 구현하였다. 이를 위하여 기존의 추천방법에 대한 장단점을 분석하고 기존 추천방법에 대한 문제점을 해결하기 위한 방법으로써 대용량 콘텐츠 및 이용자 환경에서 이용자의 묵시적 정보이용행위에 관한 정보를 포함하고 있는 로그파일을 통하여 연관규칙 생성을 위해 요구되는 항목을 추출 및 변환하여 연관규칙 생성프로그램을 통하여 연관규칙의 생성 및 정보추천을 위한 방법을 제안하였다.

웹 사용 정보 마이닝 기반의 동적 사용자 프로파일 생성 (Generator of Dynamic User Profiles Based on Web Usage Mining)

  • 안계순;고세진;정준;이필규
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.389-390
    • /
    • 2002
  • 동적 웹 컨텐츠 제공에서 고객을 위한 추천서비스에 이르는 인터넷 기반의 전자상거래 애플리케이션에서는 고객이 어떤 성향을 가지고 있는가에 대한 정보를 획득하는 것이 중요하다. 웹 개인화의 대표적인 기술인 협력적 석과는 사용자의 정보를 정적인 프로파일 형태로 저장하여 사용자의 성향 변화를 빨리 획득할 수 없다. 또한 사용자의 명시적 평가 의존성, 확장성 부족, 다차원 공간 데이터에 대한 적용 어려움 둥의 문제점을 가지고 있다. 이와 같은 단점을 해결하기 위한 해결 방안으로 웹 사용 정보 마이닝(web usage mining)이 쓰이고 있다. 웹 사용 정보 마이닝은 서버에 축적된 웹 사용 데이터(web usage data)를 이용하여 패턴을 발견하는 기술이다. 특히 연관 규칙 생성 알고리즘으로 웹 사용 패턴(web usage pattern)을 찾고 패턴을 클러스터링하는 기술이 사용되고 있다. 그러나 연관 규칙 생성 알고리즘은 많은 수의 패턴들을 찾고 또 유용하지 못한 패턴을 발견하는 단점이 있다. 본 논문에서는 검증된 웹 사용 패턴을 이용한 동적 사용자 프로파일 생성 방법을 제안한다. 먼저 패턴 발견을 위해 연관 규칙 생성 알고리즘인 Apriori를 이용하고 사용자 프로파일을 위한 클러스터를 생성하기 위해 ARHP를 채택하였다. 클러스터를 생성하기 전에 Dempster-Shafer 이론을 이용하여 유용하지 못한 패턴을 제거하는 패턴 검증 과정을 수행한다. 검증된 패턴을 이용하여 클러스터를 생성하고 사용자의 현재 활성화된 세션에 따라 동적으로 사용자 프로파일이 생성된다

마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구 (A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT)

  • 박화범;조영성;고형화
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.419-428
    • /
    • 2013
  • 유비쿼터스 컴퓨팅 환경의 전자상거래에서 실시간성과 추천의 정확도를 높이는 연구가 활발히 진행되고 있다. 대부분의 기존 추천기법들은 프로파일 방식의 문제로 고객의 관심도나 고객성향을 분석하기에는 많은 어려움과 비용의 문제가 있으며 고객은 여전히 만족하지 못하고 있다. 이는 구성되어있는 데이터베이스들의 문제가 아니라 기존 자료를 분석하기 위한 평가 자료인 신규로 프로파일을 생성하거나 다양한 프로파일을 생성하는데 문제가 있다. 또한 기존 추천기법에서는 다양한 특성을 가진 각 사용자 계층별로 차별화된 개인화 추천이 어렵다. 따라서 이 논문에서 기존의 평가 자료 방식과 다르게 구매로 인해 발생되어진 자료를 기반으로 사용자에게 번거로운 질의 응답 과정이 없이 묵시적인 방법을 이용하였다. 다양한 개인화 성향과 정확한 고객성향의 내용 분석이 가능한 FRAT 기법을 적용하였다.