• Title/Summary/Keyword: Personalization recommendation

Search Result 127, Processing Time 0.02 seconds

Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services (자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향)

  • Lee, Gyu-Dong;Kim, Jong-Uk;Lee, Won-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

An Collaborative Filtering Method based on Associative Cluster Optimization for Recommendation System (추천시스템을 위한 연관군집 최적화 기반 협력적 필터링 방법)

  • Lee, Hyun Jin;Jee, Tae Chang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.19-29
    • /
    • 2010
  • A marketing model is changed from a customer acquisition to customer retention and it is being moved to a way that enhances the quality of customer interaction to add value to our customers. Such personalization is emerging from this background. The Web site is accelerate the adoption of a personalization, and in contrast to the rapid growth of data, quantitative analytical experience is required. For the automated analysis of large amounts of data and the results must be passed in real time of personalization has been interested in technical problems. A recommendation algorithm is an algorithm for the implementation of personalization, which predict whether the customer preferences and purchasing using the database with new customers interested or likely to purchase. As recommended number of users increases, the algorithm increases recommendation time is the problem. In this paper, to solve this problem, a recommendation system based on clustering and dimensionality reduction is proposed. First, clusters customers with such an orientation, then shrink the dimensions of the relationship between customers to low dimensional space. Because finding neighbors for recommendations is performed at low dimensional space, the computation time is greatly reduced.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.

Personalization Recommendation Service using OWL Modeling (OWL 모델링을 이용한 개인 추천 서비스)

  • Ahn, Hyo-Sik;Jeong, Hoon;Chang, Hyo-Kyung;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.309-315
    • /
    • 2012
  • The dissemination of smartphones is being spread and supplementary services using smartphones are increasing and various as the Mobile network and device are developing rapidly, so smartphones that enables to provide a wide range of services is expected to receive the most attention. It makes users listen to music anytime, anywhere in real-time, use useful applications, and access to Internet to search for information. The service environment is changing on PC into Mobile due to the change of the circumstance mentioned above. these services are done by using just location information rather than other context, and users have to search services and use them. It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also defined the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

A Study on Personalization System for Improving Satisfaction in Web-based Education Environment (웹 기반 교육 환경에서 만족도 향상을 위한 개인화 시스템에 관한 연구)

  • Baek, Janghyeon;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.171-180
    • /
    • 2003
  • The recent paradigm of web-based teaching-learning is changing into a direction that analyzes the learning patterns of learners on the basis of learners' ability, aptitude, request, interest, learning history, activity profile, etc. and provides adaptive environment with individual learners The present study analyzed learners' learning patterns using data on learning activities and developed a personalization system that provides learning environment adapted to individual learners. This study customized in three aspects, which are recommendation of learning path, recommendation of interface and recommendation of interaction, through Web mining. The personalization system developed in this study was proved to be effective in improving individual learners' satisfaction with learning in Web-based teaching-learning environment.

  • PDF

Application of Market Basket Analysis to Personalized advertisements on Internet Storefront (인터넷 상점에서 개인화 광고를 위한 장바구니 분석 기법의 활용)

  • 김종우;이경미
    • Korean Management Science Review
    • /
    • v.17 no.3
    • /
    • pp.19-30
    • /
    • 2000
  • Customization and personalization services are considered as a critical success factor to be a successful Internet store or web service provider. As a representative personalization technique, personalized recommendation techniques are studied and commercialized to suggest products or services to a customer of Internet storefronts based on demographics of the customer or based on an analysis of the past purchasing behavior of the customer. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customers data. however, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed knowledge base. In this paper, we proposed a marketing rule extraction technique for personalized recommendation on Internet storefronts using market basket analysis technique, a well-known data mining technique. Using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store. An experiment has been performed to evaluate the effectiveness of proposed approach comparing with preference scoring approach and random selection.

  • PDF

OWL Modeling using Ontology for Context Aware Recommendation Service (상황 인식 추천 서비스를 위한 온톨로지 이용 OWL 모델링)

  • Chang, Chang-Bok;Kim, Manj-Jae;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.265-273
    • /
    • 2012
  • It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also proposed the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

Personalization of Document Warehouses: Formalization, Design and Implementation

  • Khrouf, Kais;Turki, Hela
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.369-373
    • /
    • 2022
  • In the decision-making domain, a document warehouse is designed to meet the analysis needs of users who may have a wide variety of analysis purposes. In this paper, we propose to integrate the preferences and interactions of users based on profiles to the concept of document warehouses. These profiles guarantee the integration of personalized documents and the collaborative recommendation of documents between different users sharing common interests.

Comparison of Recommendation Techniques for Web-based Design Personalization Service (웹기반 개인화 디자인 서비스를 위한 효과적인 추천 기법의 비교 연구)

  • Seo, Jong-Hwan;Byun, Jae-Hyung;Lee, Kun-Pyo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.spc3
    • /
    • pp.179-185
    • /
    • 2006
  • This study examines and compares various recommendation techniques which have been used successfully in other fields and seeks for opportunity to improve design personalization service more effectively. Throughout the literature study, several major recommendation techniques were identified, namely 'contents-based filtering', 'collaborative filtering', and 'demographic filtering'. In order for finding out relative advantages and disadvantages, a case study was carried out by applying different techniques. The result showed that in general, demographic filtering was evaluated least efficient among the techniques. Content-based filtering showed the best efficiency among them. Another significant finding was that the collaborative filtering had a better efficiency as the number of test subjects is increased. In conclusion, we suggest that design recommendation services can be improved by applying contents-based or collaborative filtering for better efficiency of recommendation. And, if the number of test subjects is large enough, it may be possible to remarkably improve the efficiency of design recommendation services by using collaborative filtering.

  • PDF