• Title/Summary/Keyword: Personalization Recommendation Service

Search Result 49, Processing Time 0.03 seconds

Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services (자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향)

  • Lee, Gyu-Dong;Kim, Jong-Uk;Lee, Won-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.

Personalization Recommendation Service using OWL Modeling (OWL 모델링을 이용한 개인 추천 서비스)

  • Ahn, Hyo-Sik;Jeong, Hoon;Chang, Hyo-Kyung;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.309-315
    • /
    • 2012
  • The dissemination of smartphones is being spread and supplementary services using smartphones are increasing and various as the Mobile network and device are developing rapidly, so smartphones that enables to provide a wide range of services is expected to receive the most attention. It makes users listen to music anytime, anywhere in real-time, use useful applications, and access to Internet to search for information. The service environment is changing on PC into Mobile due to the change of the circumstance mentioned above. these services are done by using just location information rather than other context, and users have to search services and use them. It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also defined the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

OWL Modeling using Ontology for Context Aware Recommendation Service (상황 인식 추천 서비스를 위한 온톨로지 이용 OWL 모델링)

  • Chang, Chang-Bok;Kim, Manj-Jae;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.265-273
    • /
    • 2012
  • It is essential to have Context-aware technology for personalization recommendation services and the appropriate representation and definition of Context information for context-aware. Ontology is possible to represent knowledge freely and knowledge can be extended by inferring. In addition, design of the ontology model is needed according to the purposes of utilization. This paper used context-aware technologies to implement a user personalization recommendation service. It also proposed the context through OWL modeling for user personalization recommendation service and used inference rules and inference engine for context reasoning.

Consumers' Usage Intentions on Online Product Recommendation Service -Focusing on the Mediating Roles of Trust-commitment- (온라인 상품추천 서비스에 대한 소비자 사용 의도 -신뢰-몰입의 매개역할을 중심으로-)

  • Lee, Ha Kyung;Yoon, Namhee;Jang, Seyoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.5
    • /
    • pp.871-883
    • /
    • 2018
  • This study tests consumer responses to online product recommendation service offered by a website. A product recommendation service refers to a filtering system that predicts and shows items that consumers would like to purchase based on their searches or pre-purchase information. The survey is conducted on 300 people in an age group between 20 and 40 years in a panel of an online survey firm. Data are analyzed using confirmatory factor analysis and structural equation modeling by AMOS 20.0. The results show that personalization quality does not have a significant effect on trust, but relationship quality and technology quality have a positive effect on trust. Three types of quality of recommendation service also have a positive effect on commitment. Trust and commitment are factors that increase service usage intentions. In addition, this study reveals the moderating effect of light users vs heavy users based on online shopping time. Light users show a negative effect of personalization quality on trust, indicating that they are likely to be uncomfortable to the service using personal information, compared to heavy users. This study also finds that trust vs commitment is an important factor increasing service usage intentions for heavy users vs light users.

Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform (과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가)

  • Park, Seong-Eun;Hwang, Yun-Young;Yoon, Jungsun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.183-191
    • /
    • 2017
  • In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

Comparison of Recommendation Techniques for Web-based Design Personalization Service (웹기반 개인화 디자인 서비스를 위한 효과적인 추천 기법의 비교 연구)

  • Seo, Jong-Hwan;Byun, Jae-Hyung;Lee, Kun-Pyo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.spc3
    • /
    • pp.179-185
    • /
    • 2006
  • This study examines and compares various recommendation techniques which have been used successfully in other fields and seeks for opportunity to improve design personalization service more effectively. Throughout the literature study, several major recommendation techniques were identified, namely 'contents-based filtering', 'collaborative filtering', and 'demographic filtering'. In order for finding out relative advantages and disadvantages, a case study was carried out by applying different techniques. The result showed that in general, demographic filtering was evaluated least efficient among the techniques. Content-based filtering showed the best efficiency among them. Another significant finding was that the collaborative filtering had a better efficiency as the number of test subjects is increased. In conclusion, we suggest that design recommendation services can be improved by applying contents-based or collaborative filtering for better efficiency of recommendation. And, if the number of test subjects is large enough, it may be possible to remarkably improve the efficiency of design recommendation services by using collaborative filtering.

  • PDF

Method of Service Curation based on User Log Analysis (사용자 이용로그 분석에 기반한 서비스 큐레이션 방법)

  • Hwang, Yun-Young;Kim, Dou Gyun;Kim, Bo-Ram;Park, Seong-Eun;Lee, Myunggyo;Yoon, Jungsun;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.701-709
    • /
    • 2018
  • Our research team implemented and operated the system by analyzing the membership information and identifying the different preferences for each group and providing the results of the recommendation based on accumulated membership information and activity log data to the individual. The utilization log was followed up. We analyzed how many people use recommended services and analyzed whether there are any factors other than the personalization service algorithm that affect the service utilization of the system with personalization. In addition, we propose recommendation methods based on behavioral changes when incentives are given through analyzing patterns of users' usage according to methods of recommending services and contents that are often used based on analysis contents.