The Journal of the Convergence on Culture Technology
/
v.4
no.1
/
pp.279-284
/
2018
With the availability of real-time student behavioral data, personalization on education is gaining a huge traction. Data collected from massively open online courses (MOOC) has shifted the content delivery method from fixed, static to user-adopted form. Such educational content can be personalized by student's level of achivement. In this paper, we propose a service that automates the content restructuring, based on dynamic profile. With the student behavioral data, the proposed service restructures educational content by changing the order, extending and shrinking the published material. To do this, we record students' behavioral data and content information as a metadata, which will be used to generate dynamic profile.
Purpose - This study aims to examine the factors that affect consumers' intention to use a global business-to-consumer sharing platform. Design/methodology - The questionnaire collected 300 copies from June 25 to July 11, 2019, of which 281 were used for statistical processing. The structural equation model (SEM) was used to test hypothesis in this research. Findings - The results showed that information innovation, personalization, and personal innovation influenced perceived usefulness, and social connectivity did not affect perceived usefulness. And perceived usefulness greatly influenced the intention to use. Research limitations/implications - The limitations of the study are that most of the survey respondents were in their twenties and could not grasp the perception of sharing economy services for various age groups. This paper derived implications that sharing platform promotes sharing and cooperation, which are the basic principles of international trade, to increase the intrinsic value of resources by cyclically using and utilizing limited resources around the world. Originality/value - It aims to contribute to the growth of consumer value-related industries and the welfare of society by providing implications from the point of view of sharing platform services.
Journal of the Korean Society of Clothing and Textiles
/
v.46
no.1
/
pp.17-32
/
2022
This study aimed to examine the effect of ad attributes on engagement, the mediating effect of engagement on the relationship between ad attributes and advertising effectiveness (attitudes toward ads, continuous intention to search, and e-WOM intention), and the differences in advertising effectiveness at different levels (low vs. high) of curiosity toward fashion video ads in the online context. For this purpose, a total of 408 responses were collected from consumers who were aged 20-40 years and had viewed fashion video ads via PC/mobile channels in the preceding six months. The results showed that three advertising attributes, namely informativeness, entertainment, and personalization, were significant predictors of engagement. Additionally, engagement had a significant mediating effect on the relationship between entertainment and ad effectiveness. Moreover, both informativeness and entertainment had a significant direct effect on the behavioral intention to search and engage in e-WOM. At the high-curiosity level, engagement had a significant influence on ad attitudes and e-WOM intention. In contrast, at the low-curiosity level, entertainment had a significant influence on e-WOM intention and continuous intention to search. These findings are meaningful in that they extend the advertising attitude model to fashion video ads in the online context.
Journal of information and communication convergence engineering
/
v.20
no.4
/
pp.288-294
/
2022
The media content market has been growing, as various types of content are being mass-produced owing to the recent proliferation of the Internet and digital media. In addition, platforms that provide personalized services for content consumption are emerging and competing with each other to recommend personalized content. Existing platforms use a method in which a user directly inputs video metadata. Consequently, significant amounts of time and cost are consumed in processing large amounts of data. In this study, keyframes and audio spectra based on the YCbCr color model of a movie trailer were extracted for the automatic generation of metadata. The extracted audio spectra and image keyframes were used as learning data for genre recognition in deep learning. Deep learning was implemented to determine genres among the video metadata, and suggestions for utilization were proposed. A system that can automatically generate metadata established through the results of this study will be helpful for studying recommendation systems for media super-personalization.
The integration of ChatGPT, an AI-powered language model, is causing a profound transformation within the food industry, impacting various domains. It offers novel capabilities in recipe creation, personalized dining, menu development, food safety, customer service, and culinary education. ChatGPT's vast culinary dataset analysis aids chefs in pushing flavor boundaries through innovative ingredient combinations. Its personalization potential caters to dietary preferences and cultural nuances, democratizing culinary knowledge. It functions as a virtual mentor, empowering enthusiasts to experiment creatively. For personalized dining, ChatGPT's language understanding enables customer interaction, dish recommendations based on preferences. In menu development, data-driven insights identify culinary trends, guiding chefs in crafting menus aligned with evolving tastes. It suggests inventive ingredient pairings, fostering innovation and inclusivity. AI-driven data analysis contributes to quality control, ensuring consistent taste and texture. Food writing and marketing benefit from ChatGPT's content generation, adapting to diverse strategies and consumer preferences. AI-powered chatbots revolutionize customer service, improving ordering experiences, and post-purchase engagement. In culinary education, ChatGPT acts as a virtual mentor, guiding learners through techniques and history. In food safety, data analysis prevents contamination and ensures compliance. Overall, ChatGPT reshapes the industry by uniting AI's analytics with culinary expertise, enhancing innovation, inclusivity, and efficiency in gastronomy.
Consumer demand for e-commerce services has skyrocketed due to the introduction of social distancing standards and lockdown measures that countries have taken to combat the pandemic. There has been a notable surge in the popularity of on-demand delivery services, with a significant influx of new users turning to the e-platform for assistance. This research paper tries to identify the enablers of E-commerce Utility and Service Quality and establish a connection using total interpretive structural modelling (TISM). Enablers are the building blocks for providing customers with an enhanced and more consistent service experience contributing to service quality. The enablers and the linkages thus established hold valuable insights for e-commerce marketers, aiding them in effectively reaching their customers, and achieving desired growth outcomes. The TISM- based model and the MICMAC analysis identified two barriers; website design and personalization as the decisive attributes of e-commerce service quality, possessing strong driving power and weak dependence. Furthermore, the factors of reliability, responsiveness, information, and ease of use form the linkage zone, indicating that any action taken on these factors would not only influence other factors but also have a reciprocal effect on them.
Purpose - To examine the influence of mobile visual search as a strategic technology service on consumer perceived economic value and customer commitments, which in turn affect consumer's usage intention of mobile visual search. This study also explores the moderating effect of different levels of consumer online shopping orientation. Design/methodology/approach - One-by-one open-ended in-depth interview was first undertaken to 15 Korean consumers to figure the features of mobile visual search. Then a conceptual model was built to verify the hypotheses that indicate the impact of mobile visual search on consumer perceived economic value and customer commitment, which further influence consumer's usage intention. Findings - The results show Convenience, Information quality, Personalization, Text-free search interface design and Visual communication of mobile visual search positively influence consumer perceived economic value and customer commitment and in turn positively affect consumer's usage intention. Moreover, the different levels of consumer online shopping orientation also found to have different effects on consumers' perception and behavior of using mobile visual search in online fashion shopping. Research implications or Originality - The present study verified that mobile visual search is a service tool that consumers want to use in the online fashion shopping journey since it provides economic benefits.
Personalization aims to provide customized contents to each user by using the user's personal preferences. In this sense, the core parts of personalization are regarded as recommendation technologies, which can recommend the proper contents or products to each user according to his/her preference. Prior studies have proposed novel recommendation technologies because they recognized the importance of recommender systems. Among several recommendation technologies, collaborative filtering (CF) has been actively studied and applied in real-world applications. The CF, however, often suffers sparsity or scalability problems. Prior research also recognized the importance of these two problems and therefore proposed many solutions. Many prior studies, however, suffered from problems, such as requiring additional time and cost for solving the limitations by utilizing additional information from other sources besides the existing user-item matrix. This study proposes a novel implicit rating approach for collaborative filtering in order to mitigate the sparsity problem as well as to enhance the performance of recommender systems. In this study, we propose the methods of reducing the sparsity problem through supplementing the user-item matrix based on the implicit rating approach, which measures the trust level among users via the existing user-item matrix. This study provides the preliminary experimental results for testing the usefulness of the proposed model.
The development of information and communication technology and COVID-19 have caused an unusual change in the hotel industry, and the demand for the contactless services such as service robots from hotel customers has surged. Therefore, this study investigates the perception of hotel customers on contactless services by applying a mixed-method analysis. Specifically, this study identified the causal correlations between variables through the structural equation model, and further applied the fuzzy set qualitative comparison analysis to derive patterns of variables that form the intention to use the non-face-to-face services. As a result of the analysis, it was shown that service experience co-creation, palyfulness, personalization, and trust had a significant effect on intention to use through the contactless service use desire. On the other hand, in the results of fuzzy-set qualitative comparison analysis, playfulness was derived as a core factor in all patterns. Based on these analysis results, this study provides academic basis for in-depth understanding of hotel customers' perception of contactless service and specific guidelines for hotel managers on the contactless service strategies in the era of COVID-19 pandemic.
Journal of the Korea Society of Computer and Information
/
v.20
no.3
/
pp.47-56
/
2015
Automated detection of interesting web pages could be used in many different application domains. Determining a user's interesting web pages can be performed implicitly by observing the user's behavior. The task of distinguishing interesting web pages belongs to a classification problem, and we choose white box learning methods (fixed effect logit regression and support vector machine) to test empirically. The result indicated that (1) fixed effect logit regression, fixed effect SVMs with both polynomial and radial basis kernels showed higher performance than the linear kernel model, (2) a personalization is a critical issue for improving the performance of a model, (3) when asking a user explicit grading of web pages, the scale could be as simple as yes/no answer, (4) every second the duration in a web page increases, the ratio of the probability to be interesting increased 1.004 times, but the number of scrollbar clicks (p=0.56) and the number of mouse clicks (p=0.36) did not have statistically significant relations with the interest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.