• Title/Summary/Keyword: Personalization Algorithms

Search Result 25, Processing Time 0.019 seconds

Equivalence Heuristics for Malleability-Aware Skylines

  • Lofi, Christoph;Balke, Wolf-Tilo;Guntzer, Ulrich
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.207-218
    • /
    • 2012
  • In recent years, the skyline query paradigm has been established as a reliable method for database query personalization. While early efficiency problems have been solved by sophisticated algorithms and advanced indexing, new challenges in skyline retrieval effectiveness continuously arise. In particular, the rise of the Semantic Web and linked open data leads to personalization issues where skyline queries cannot be applied easily. We addressed the special challenges presented by linked open data in previous work; and now further extend this work, with a heuristic workflow to boost efficiency. This is necessary; because the new view on linked open data dominance has serious implications for the efficiency of the actual skyline computation, since transitivity of the dominance relationships is no longer granted. Therefore, our contributions in this paper can be summarized as: we present an intuitive skyline query paradigm to deal with linked open data; we provide an effective dominance definition, and establish its theoretical properties; we develop innovative skyline algorithms to deal with the resulting challenges; and we design efficient heuristics for the case of predicate equivalences that may often happen in linked open data. We extensively evaluate our new algorithms with respect to performance, and the enriched skyline semantics.

An Empirical Analysis of the Active Use Paths induced by YouTube's Personalization Algorithm (유튜브의 개인화 알고리즘이 유도하는 적극이용 경로에 대한 실증분석)

  • Seung-Ju Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.31-45
    • /
    • 2023
  • This study deals with exploring qualitative steps and paths that appear as YouTube users' usage time increases quantitatively. For the study, I applied theories from psychology and neuroscience, subdivided the interval between the personalization algorithm of the recommendation system, and active use and analyzed the relationship between variables in this process. According to the theory behavioral model theory (FBM), variable reward, and dopamine addiction were applied. Personalization algorithms easy clicks as triggers according to associated content presentation functions in behavioral model theory (FBM). Variable rewards increase motivational effectiveness with unpredictability of the content you search, and dopamine nation is summarized as stimulating the dopaminergic nerve to continuously and actively consume content. This study is expected to make an academic and practical contribution in that it divides the purpose of use of content in the personalization algorithm and active use section into four stages from a psychological perspective: first use, reuse, continuous use, and active use, and analyzes the path.

The Study on Visualizing the Impact of Filter Bubbles on Social Media Networks

  • Sung-hwan JIN;Dong-hun HAN;Min-soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this study, we delve into the effects of personalization algorithms on the creation of "filter bubbles," which can isolate individuals intellectually by reinforcing their pre-existing biases, particularly through personalized Google searches. By setting up accounts with distinct ideological learnings-progressive and conservative-and employing deep neural networks to simulate user interactions, we quantitatively confirmed the existence of filter bubbles. Our investigation extends to the deployment of an LSTM model designed to assess political orientation in text, enabling us to bias accounts deliberately and monitor their increasing ideological inclinations. We observed politically biased search results appearing over time in searches through biased accounts. Additionally, the political bias of the accounts continued to increase. These results provide numerical evidence for the existence of filter bubbles and demonstrate that these bubbles exert a greater influence on search results over time. Moreover, we explored potential solutions to mitigate the influence of filter bubbles, proposing methods to promote a more diverse and inclusive information ecosystem. Our findings underscore the significance of filter bubbles in shaping users' access to information and highlight the urgency of addressing this issue to prevent further political polarization and media habit entrenchment. Through this research, we contribute to a broader understanding of the challenges posed by personalized digital environments and offer insights into strategies that can help alleviate the risks of intellectual isolation caused by filter bubbles.

A study on the personalization information service based on learning system (학습시스템에 기반한 개인화 정보 서비스에 관한 연구)

  • NamGoong, Hwang
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.4 s.50
    • /
    • pp.113-134
    • /
    • 2003
  • With SDI service provided in libraries and information centers traditionally, this paper studies component technologies and structure of system platform in PIS(personalization information service based on the customized information service served currently in some institutions. The PIS system should provide relevant information as an output through the learning system analyzing user information searching behavior as an input value with personal profile information. To do it, this paper studies requirements and algorithms to develop PIS, and proposes learning system and recommendation system as core components in PIS.

Research on the Strategic Use of AI and Big Data in the Food Industry to Drive Consumer Engagement and Market Growth

  • Taek Yong YOO;Seong-Soo CHA
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.

Personalized Mentor/Mentee Recommendation Algorithms for Matching in e-Mentoring Systems (e-멘토링 시스템에서 매칭을 위한 개인선호도기반 멘토/멘티 추천 알고리즘)

  • Jin, Heui-Lan;Park, Chan-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In advance of Knowledge Information Society, mentoring is becoming an efficient method for developing and managing human resources. There are several factors to improve the effect of mentoring. Among them, a matching mechanism that connects a mentee and a mentor is the most important in mentoring. In the existing e-mentoring systems, administrators rarely consider personal data. They match suitable mentors for mentees in a mandatory way, which reflects bad effects in the e-mentoring. In this paper, we propose new recommendation algorithms for matching by analyzing personal preferences for secondary school students to improve the effects of the mentoring. In addition, we compare our algorithms with the existing algorithms in terms of elaborateness, accordance, and diversity in order to prove the effectiveness of the proposed algorithms.

  • PDF

Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform (과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가)

  • Park, Seong-Eun;Hwang, Yun-Young;Yoon, Jungsun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.183-191
    • /
    • 2017
  • In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.

Content Curation Strategies of University Libraries for Research and Learning Support (연구·학습 지원을 위한 대학도서관의 콘텐츠 큐레이션 전략)

  • Oh, Sunhye
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.3
    • /
    • pp.287-314
    • /
    • 2022
  • The purpose of this study was to present a content curation strategy of the university library to support user learning and research. As a method to achieve the purpose of the study, first, the concept of content curation was examined through literature research. After that, implications were found by analyzing the cases of content curation services such as university libraries, national libraries, and content companies. As a result of the study, five strategies for successful content curation of university libraries were proposed: providing high quality contents, performing preemptive information service roles, keep content up to date, securing interactivity through user participation, and developing personalization algorithms.

A Model to Infer Users' Behavior Patterns for Personalized Recommendation Service based Context-Awareness (컨텍스트 인식 기반 개인화 추천 서비스를 위한 사용자 행동패턴 추론 모델)

  • Seo, Hyo-Seok;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.293-297
    • /
    • 2012
  • In order to provide with personalized recommendation service in context-awareness environment, the collected context data should be analyzed fast and the objective of user should be able to inferred effectively. But, the context collected from the mobile devices is not suitable for applying the existing inference algorithms as they are due to the omission or uncertainty of information and the efficient algorithms are required for mobile environment. In this paper, the behavior pattern was classified using naive bayes classification for minimize the loss caused by the omission or error of information. And pattern matching was used to effectively learn of the users inclination and infer the behavior purpose. The accuracy of the suggested inference model was evaluated by applying to the application recommendation service in the smart phones.

Future Trends of AI-Based Smart Systems and Services: Challenges, Opportunities, and Solutions

  • Lee, Daewon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.717-723
    • /
    • 2019
  • Smart systems and services aim to facilitate growing urban populations and their prospects of virtual-real social behaviors, gig economies, factory automation, knowledge-based workforce, integrated societies, modern living, among many more. To satisfy these objectives, smart systems and services must comprises of a complex set of features such as security, ease of use and user friendliness, manageability, scalability, adaptivity, intelligent behavior, and personalization. Recently, artificial intelligence (AI) is realized as a data-driven technology to provide an efficient knowledge representation, semantic modeling, and can support a cognitive behavior aspect of the system. In this paper, an integration of AI with the smart systems and services is presented to mitigate the existing challenges. Several novel researches work in terms of frameworks, architectures, paradigms, and algorithms are discussed to provide possible solutions against the existing challenges in the AI-based smart systems and services. Such novel research works involve efficient shape image retrieval, speech signal processing, dynamic thermal rating, advanced persistent threat tactics, user authentication, and so on.