• Title/Summary/Keyword: Personal Temporal Data

Search Result 26, Processing Time 0.021 seconds

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).

Existing Population Exposure Assessment Using PM2.5 Concentration and the Geographic Information System (지리정보시스템(GIS) 및 존재인구를 이용한 초미세먼지(PM2.5) 노출평가)

  • Jaemin, Woo;Gihong, Min;Dongjun, Kim;Mansu, Cho;Kyeonghwa, Sung;Jungil, Won;Chaekwan, Lee;Jihun, Shin;Wonho, Yang
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.6
    • /
    • pp.298-305
    • /
    • 2022
  • Background: The concentration of air pollutants as measured by the Air Quality Monitoring System (AQMS) is not an accurate population exposure level since actual human activities and temporal and spatial variability need to be considered. Therefore, to increase the accuracy of exposure assessment, the population should be considered. However, it is difficult to obtain population data due to limitations such as personal information. Objectives: The existing population defined in this study is the number of people in each region's grid. The purpose is to provide a methodology for evaluating exposure to PM2.5 through existing population data provided by the National Geographic Information Institute. Methods: The selected study period was from October 26 to October 28, 2021. Using PM2.5 concentration data measured at the Sensor-based Air Monitoring Station (SAMS) installed in Guro-gu and Wonju-si, the concentration for each grid was estimated by applying inverse distance weights through QGIS version 3.22. Considering the existing population, population-weighted average concentration (PWAC) was calculated and the exposure level of the population was compared by region. Results: The outdoor PM2.5 concentration as measured through the SAMS was high in Wonju-si on all three days. Wonju-si showed an average 22% higher PWAC than Guro-gu. As a result of comparing the PWAC and outdoor PM2.5 concentration by region, the PWAC in Guro-gu was 1~2% higher than the observed value, but it was almost the same. Conversely, observations of Wonju-si were 10.1%, 11.3%, and 8.2% higher than PWAC. Conclusions: It is expected that the Geographic Information System (GIS) method and the existing population will be used to evaluate the exposure level of a population with a narrow activity radius in further research. In addition, based on this study, it is judged that research on exposure to environmental pollutants and risk assessment methods should be expanded.

A Methodology of Measuring Degree of Contextual Subjective Well-Being Using Affective Predicates for Mental Health Aware Service (정신적 건강 서비스를 위한 감성구를 활용한 주관적 웰빙 지수 측정 방법론)

  • Kwon, Oh-Byung;Choi, Suk-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.1-23
    • /
    • 2011
  • The contextual subjective well-being (SWB) of context-aware system users can be very helpful in recommending relevant mental health services, especially for those who struggle with mental illness due to a metabolic syndrome or melancholia. Self-surveying measuring or auto-sensing methods have been suggested to monitor users' SWB. However, self-surveying measuring method is not inappropriate for a context-aware service due to requesting personal data in a manual and hence obtrusive manner. Moreover, auto-sensing methods still suffer from accuracy problem to be applied in mental health services. Hence, the purpose of this paper is to propose a contextual SWB estimation method to estimate the user's mental health in unobtrusive and accurate manners. This method is timely in that it acquires context data from the user's literal responses, which expose their temporal feeling. In particular, we developed a measuring method based on exposed feeling verbs and degree adverbs in chat and other text-based communications which show anger or negative feelings. Based on the proposed contextual SWB degree estimation method, we developed an idea of well-being life care recommendation. From the experiment with actual drivers, we demonstrated that the proposed method accurately estimate the user's degree of negative feelings even though it does not require a self-survey.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.