• Title/Summary/Keyword: Perpendicular Permanent Magnet Double-Sided Linear Synchronous Motor

Search Result 2, Processing Time 0.014 seconds

Design and Analysis of Permanent Magnet Double-Sided Linear Synchronous Motor with Perpendicular Arrangement (수직배열형 양측식 영구자석 선형 동기전동기의 설계 및 해석)

  • Kim, Chang-Eob;Lee, Seong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.62-73
    • /
    • 2013
  • In this paper, a new linear synchronous motor - permanent magnet double-sided synchronous motor with perpendicular arrangement (PMDLSM), was proposed. It was designed to account for the drawbacks of conventional linear motors, such as the normal force and end effects. The detent force and the thrust were analyzed for different combinations of primary core modules and magnet poles of the machine, and the optimum combination was made. The characteristics of the perpendicular PMDLSM were analyzed by finite element method, and the experiments agreed well with the analysis.

Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method (반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계)

  • Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.