• Title/Summary/Keyword: Peroxo

Search Result 38, Processing Time 0.022 seconds

Magnetic Property of ${\mu}$-Peroxo-bis[bis(diphenylglyoximato)iron(Ⅲ)] (${\mu}$-Peroxo-bis[bis(diphenylglyoximato)iron(Ⅲ)]의 자기적 성질)

  • Chong Shik Chin;L. Vaska
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 1980
  • It was observed that the magnetic moment for iron in $[(DPGH)_2FeO_2Fe(DPGH)_2]$, the oxygenation product of a octahedral iron(Ⅱ) complex, $[Fe(DPGH)_2(NH_3_2]$, decreases with decreasing temperature from ${\mu}$ = 3.60 B.M (Bohr Magneton) per iron at $298^{\circ}$K down to ${\mu}$ = 1.65 B.M per iron at $4.2^{\circ}K$. This observation may be explained by a weak antiferromagnetic coupling between two iron(Ⅲ) atoms of intermediate spin state (S = 3/2) in the molecule with the coupling constant $J = -l cm^{-1}$.

  • PDF

Peroxy Acid Oxidations: A Kinetic and Mechanistic Study of Oxidative Decarboxylation of $\alpha$-Keto Acids by Peroxomonophosphoric Acid

  • Radhasyam Panda
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.909-913
    • /
    • 2001
  • The kinetics of oxidative decarboxylation of pyruvic acid and benzoylformic acid by peroxomonophosphoric acid (PMPA) in aqueous medium have been investigated. The reaction follows second order-first order each in PMPA and substrate concentration a t constant pH. The reactivity of different peroxo species in the oxidation has been determined. Activation energy and thermodynamic parameters have been computed. A plausible mechanism consistent with the observed results is proposed.

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

Rates and Mechanism of Decomposition of Hydrogen Peroxide by Copper(Ⅱ)-Amines Complexes (구리(Ⅱ)-아민류착물에 의한 과산화수소의 분해반응속도와 메카니즘)

  • Sun-Deuk Kim;Yun-Yeol Shin;Jeong-Eun Park;Chang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.199-205
    • /
    • 1993
  • The decomposition of hydrogen peroxide by copper-amines complexes was studied in the pH range of 7.3∼11.3 by measuring the rate of the decreasing concentration of $H_2O_2$. Decomposition rate of hydrogen peroxide increased with increasing pH, and then decreased with increasing pH successively. The mechanism for this type of reaction involves the formation of peroxo complexes in the rate-determining step preceding deprotonation of hydrogen peroxide and copper-amines complexes.

  • PDF