• Title/Summary/Keyword: Peroxisome proliferator-activated receptor ${\alpha}/{\gamma}$

Search Result 190, Processing Time 0.025 seconds

Influence of 17β-Estradiol on 15-Deoxy-Δ12,14 Prostaglandin J2 -Induced Apoptosis in MCF-7 and MDA-MB-231 Cells

  • Yaacob, Nik Soriani;Nasir, Rabail;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6761-6767
    • /
    • 2013
  • The nuclear receptor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of $PPAR{\gamma}$, 15-deoxy-${\Delta}^{12,14}$ prostaglandin $J_2$ (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha ($ER{\alpha}$)-positive (MCF-7) and $ER{\alpha}$-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between $ER{\alpha}$ and $ER{\alpha}$, the effect of the $ER{\alpha}$ ligand, $17{\beta}$-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The $ER{\alpha}$ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances $ER{\alpha}$-independent anticancer effects of PGJ2 in the presence of its receptor.

Changes in mRNA Expression of Obesity-related Genes by GyeongshinhaeGihwan 1 (GGT1) in hGHTg (human growth hormone transgenic) obese Female Rats (암컷 hGHTg 비만 쥐에서 경신해지환(輕身解脂丸) (GGT1)에 의한 비만관련 유전자 mRNA 발현의 변화)

  • Yoon, Ki-Hyeon;Yoon, Mi-Chung;Kim, Hoon;Shin, Soon-Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.383-387
    • /
    • 2006
  • To investigate the effect of GyeongshinhaeGihwan 1(GGT1) frequently used as an anti-obesity herbal medicine in oriental medicine on the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese female rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), $PPAR{\gamma}$ (peroxisome proliferator activated receptor-gamma), $PPAR{\delta}$ (peroxisome proliferator activated receptor-delta), leptin, $TNF{\alpha}$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3-phosphate dehydrogenase) were analyzed by RT-PCR. Compared with control group, $PPAR{\gamma}$ mRNA levels of liver and kidney were decreased in both RD and GGT1 groups, and the effects were more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of lipid storage by decreasing the $PPAR{\gamma}$ expression. $PPAR{\delta}$ mRNA levels of adipose tissue were increased by RD and GGT1 compared with DW, and the magnitude of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating $PPAR{\delta}$ expression. GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite, than control and RD groups. However, The mRNA levels of leptin, LPL, and $TNF{\alpha}$ were not changed by GGT1. These results indicate that GGT1 can prevent obesity in hGHTg obese female rats by down-regulating and up-regulating the mRNA expression of $PPAR{\gamma}$ and $PPAR{\delta}$, respectively, and that this anti-obesity effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to inhibit obesity by increasing the circulating leptin levels.

Inhibitory Effects of Lyophilized Dropwort Vinegar Powder on Adipocyte Differentiation and Inflammation (미나리 발효 식초의 지방세포 분화억제 및 항염증 효과)

  • Park, Yun-Hee;Choi, Jun-Hyeok;Whang, Key;Lee, Syng-Ook;Yang, Seun-Ah;Yu, Mi Hee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.476-484
    • /
    • 2014
  • Obesity, which is characterized by a state of mild chronic inflammation, is known to cause metabolic diseases. This study was carried out to investigate the effect of lyophilized dropwort vinegar powder (DVP) on adipocyte differentiation and inflammation in T3-L1 preadipocyte and RAW 264.7 macrophage cell lines. DVP inhibited the differentiation of 3T3-L1 preadipocytes induced by a mixture of IBMX, dexamethasone, and insulin (MDI). Western blot analysis of cell lysates showed that DVP decreased the levels of two major transcription factors involved in adipogenesis, peroxisome proliferator- activated receptor-${\gamma}$ (PPAR-${\gamma}$) and CCAAT-enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$). DVP also significantly suppressed lipopolysaccharide (LPS)-induced production of nitric oxide (NO), and this was accompanied by a decrease in inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression. These results demonstrate that DVP inhibits MDI-induced adipocyte differentiation of 3T3-L1 cells and LPS-induced inflammation in RAW 264.7 macrophage cells. The findings indicate that this natural product may be a good candidate as to prevent metabolic diseases.

Antiadipogenic Effects of Red Radish (Raphanus sativus L.) Sprout Extract in 3T3-L1 Preadipocytes (적무 새싹 추출물의 3T3-L1 지방전구세포에서 지방합성 억제 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Cheon, Chun Jin;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1224-1230
    • /
    • 2014
  • The red radish (Raphanus sativus L.; RR) sprout is a plant of the cruciferous family. In this study, we elucidated the effect of the water extract of RR sprout (RRSE) against ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity and adipogenesis in 3T3-L1 preadipocytes. ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity was inhibited in a concentration-dependent manner by RRSE treatment. RSSE also abolished adipocyte differentiation and lipid and triglyceride accumulation without cytotoxicity in 3T3-L1 adipocytes. In addition, RRSE modulated the expression of the proteins related to adipogenic transcription factors: peroxisome proliferator-activated receptor (PPAR)${\gamma}$, sterol regulatory element-binding protein 1 (SREBP-1), and CCAT/enhancer binding protein (C/EBP)${\alpha}$. RRSE also suppressed expression of the proteins responsible for lipid synthesis, transport, and storage: adiponectin, fatty acid synthesis (FAS), perilipin, and fatty acid bind protein-4 (FABP4). This study showed that RRS treatment has the potential to inhibit obesity by controlling the expression of adipogenic transcription factors and adipogenic proteins.

Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice

  • Park, Miey;Yoo, Jeong-Hyun;Lee, You-Suk;Park, Eun-Jung;Lee, Hae-Jeung
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.350-361
    • /
    • 2020
  • Background: Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods: HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results: BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion: Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.

Assessment of Adipocyte Differentiation and Maturation-related Gene Expression in the Epididymal Fat of Estrogen Receptor α Knockout (ERαKO) Mouse during Postnatal Development Period

  • Cheon, Yong-Pil;Ko, CheMyong;Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.287-296
    • /
    • 2020
  • The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

Anti-Adipogenic Activity of Ailanthoidol on 3T3-L1 Adipocytes

  • Park, Ju-Hyung;Jun, Jong-Gab;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Previous our study demonstrated that ailanthoidol (3-deformylated 2-arylbenzo[b]furan), a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, is a novel anti-inflammatory agent. In this investigation, we examined the anti-adipogenic effect of ailanthoidol. Our data showed that ailanthoidol suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells. Treatment of the 3T3-L1 adipocytes with ailanthoidol resulted in an attenuation of the releases of leptin and interleukin-6. The expression of peroxisome proliferator-activated receptor $(PPAR){\gamma}$ and CCAAT/enhancer-binding protein $(C/EBP){\alpha}$, the central transcriptional regulators of adipogenesis, was decreased by treatment with ailanthoidol. Additionally, ailanthoidol treatment increased the phosphorylation levels of 5' adenosine monophosphate-activated protein kinase. These results suggest that ailanthoidol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$ expression. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of ailanthoidol.

Anti-adipogenic Effect of Chlorogenic Acid in 3T3-L1 Adipocytes

  • Park, Se-Eun;Choi, Jun-Hui;Lee, Hyo-Jeong;Seo, Kyoungsun;Kim, Seung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.80-80
    • /
    • 2018
  • Chlorogenic acid is a phenolic compound found in Cudrania tricuspidata fruits. In the present study, the effect of chlorogenic acid on the inhibition of adipogenesis in 3T3-L1 adipocytes was investigated. Cells were stained with Oil red O reagent to detect lipid droplets in adipocytes. The 3T3-L1 cells were lysed and measured for intracellular triglyceride and adipokine by ELISA kit. The protein expression of adipogenesis-related gene was evaluated by Western blot analysis. Chlorogenic suppressed lipid droplet and intracellular triglyceride accumulation in a concentration manner and also decreased secretion of adipokines such as leptin and adiponectin, compared with fully differentiated adipocytes. Treatment of 3T3-L1 cells with chlorogenic acid reduced the protein levels of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and, CCAAT/enhancer binding proteins alpha ($C/EBP{\alpha}$). This indicates that chlrogenic acid was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceridef formation in adipocyte and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$.

  • PDF

Effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in Holstein cows

  • Huang, Wenming;Wang, Libin;Li, Shengli;Cao, Zhijun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.648-656
    • /
    • 2019
  • Objective: An experiment was conducted to determine the effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in cows during the transition period. Methods: Thirty-nine Holstein dry cows were blocked and assigned randomly to three groups, fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation $[NE_L]/kg$ dry matter [DM]), a medium energy density diet (MD, $1.47Mcal\;NE_L/kg\;DM$), or a low energy density diet (LD, $1.30Mcal\;NE_L/kg\;DM$) prepartum; they were fed the same lactation diet to 28 days in milk (DIM). All the cows were housed in a free-stall barn and fed ad libitum. Results: The reduced energy density diets decreased the blood insulin concentration and increased nonesterified fatty acids (NEFA) concentration in the prepartum period (p<0.05). They also increased the concentrations of glucose, insulin and glucagon, and decreased the concentrations of NEFA and ${\beta}-hydroxybutyrate$ during the first 2 weeks of lactation (p<0.05). The plasma urea nitrogen concentration of both prepartum and postpartum was not affected by dietary energy density (p>0.05). The dietary energy density had no effect on mRNA abundance of insulin receptors, leptin and peroxisome proliferator-activated $receptor-{\gamma}$ in adipose tissue, and phosphoenolpyruvate carboxykinase, carnitine palmitoyltransferase-1 and peroxisome proliferator-activated $receptor-{\alpha}$ in liver during the transition period (p>0.05). The HD cows had higher mRNA abundance of hormone-sensitive lipase at 3 DIM compared with the MD cows and LD cows (p = 0.001). The mRNA abundance of hepatic pyruvate carboxy-kinase at 3 DIM tended to be increased by the reduced energy density of the close-up diets (p = 0.08). Conclusion: The reduced energy density diet prepartum was effective in controlling adipose tissue mobilization and improving the capacity of hepatic gluconeogenesis postpartum.

Hypoglycemic Effect of Paeonia lactiflora in High Fat Diet-Induced Type 2 Diabetic Mouse Model (고지방식이 유발 제2형 당뇨모델 마우스에서 작약의 혈당강하 효능)

  • Yoon, In-Soo;Jung, Yujung;Kim, Hyun Jung;Lim, Hyun Jin;Cho, Seung-Sik;Shim, Jung-Hyun;Kang, Bok Yun;Cheon, Seung Hoon;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.194-199
    • /
    • 2014
  • The roots of Paeonia lactiflora (PL) has been traditionally used as analgesic, spasmolytic and tonic in Korea, China, and Japan. As part of a search for herbal medicine to treat diabetes and obesity, we confirmed hypoglycemic effect of PL through high fat diet-induced obese and diabetic mice experiments in vivo. Treatment of ethanolic extract from PL led to a significant decrease in glucose level, which is comparable to that of an antidiabetic drug metformin. In addition, PL selectively stimulates the transcriptional activities of both peroxisome proliferator-activated receptor $(PPAR){\alpha}$ and ${\gamma}$, and inhibits enzymatic activity of protein tyrosine phosphatase 1B (PTP1B), which are predicted to be therapeutic target in treatment of type2 diabetes and obesity. Especially, the n-hexane fraction (Hx) from PL ethanol extract showed more potent activities on $PPAR{\alpha}$ and than others and exihibited moderate inhibitory activity against PTP1B.