• Title/Summary/Keyword: Peroneus muscles

Search Result 35, Processing Time 0.021 seconds

Variations in Stroke Patients' Muscle Activity during Head Rotation in Non-Paretic-Side Weight Bearing

  • Lee, Kwan-Sub;Choe, Han-Seong;Lee, Byung-Joo
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.159-163
    • /
    • 2015
  • Purpose: This study aimed to determine the interaction among the neck, trunk, and lower extremities on the non-paretic side in head rotation along with non-paretic-side weight shifting of stroke patients. To compare stroke patients' ability to control posture through muscle activity variation related to pertubation during head rotation along with the non-paretic limb. Methods: We tested 15 hemiplegic patients and 15 normal individuals. Each group's muscle activity was measured by electromyography in neutral head position and head rotation position. We compared each group's resu lt based on measured values in patients' non-paretic neck muscles, trunk muscles, and lower limbs muscles activation. Results: The study showed that muscle activity increased in the sternocleidomastoid muscle (102.26%, 53.00%), splenius capitis muscle (97.93%, 54.93%), erector spinae muscle (241.00%, 127.60%), external oblique abdominal muscle (256.66%, 152.00%), and internal oblique abdominal muscle (252.80%, 152.6%), peroneus longus muscle (117.53%, 137.13%) and gastrocnemius muscle (119.06%, 137.20%), while the results for the sternocleidomastoid muscle, splenius capitis muscle, erector spinae muscle, external oblique abdominal muscle, internal oblique abdominal muscle, peroneus longus muscle, and gastrocnemius muscle showed a statistically significant difference (p<0.05). Conclusion: It is hard for stroke patients to engage in normal movement control under suggested conditions because of the insufficient movement against gravity on the stroke patient's non-paretic side and impaired cooperative patterns. To solve these problems, patients need their bodies to improve through effective movement, resulting in advanced control of their effective and functional activity.

Analysis of the Muscle Activity of the Trunk and the Lower Extremities in Relation to the Initial Bending Angle of the Hip Joint During Bridge Exercise (교각운동시 엉덩관절 초기 굽힘 각도에 따른 체간 및 하지의 근활성도 분석)

  • Kim, Eun-Young;Jeong, Young-June;Song, Myung-Hwan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.18 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • Background: The present study was conducted with 30 adult males in order to examine the muscle activity of the trunk and the lower extremities at diverse initial bending angles of the hip joint during bridge exercise on a stable surfaces and on an unstable surface that is widely performed for stabilization. Methods: The initial angles of the hip joint used were $0^{\circ}$, $45^{\circ}$ and $90^{\circ}$ and the subjects were divided into a matt experimental group and a balance training group. Results: In maximum values of muscle activity at different exercise methods and angles, the matt experimental group showed statistically significant differences in the muscle activity values of the rectus abdominis muscle, the erector spinae muscle, the rectus femoris muscle and the peroneus muscles between different angles while the balance training group showed significant differences only in the muscle activity values of the erector spinae muscle between different initial angles of the hip joint. The matt experimental group showed significant differences in muscle activity between initial angles $0^{\circ}$ and $90^{\circ}$, between $45^{\circ}$ and $90^{\circ}$ in the rectus abdominis muscle, between $0^{\circ}$ and $90^{\circ}$ in the erector spinae muscle, between $45^{\circ}$ and $90^{\circ}$ in the rectus femoris muscle and between $0^{\circ}$ and $90^{\circ}$ in the peroneus muscles while the balance training group showed significant differences between $0^{\circ}$ and $90^{\circ}$ in the erector spinae muscle. Conclusions: Therefore, it is thought that bridge exercises should be applied to patients using diverse methods.

  • PDF

Immediate Effects of the Pronation Squat on the Genu Varum and the Muscles Around the Knee (엎침 스쿼트 운동이 안굽이와 무릎 주위 근육에 미치는 즉각적 효과)

  • Kim, Hyeon-Su;Kim, Kyoung-Don
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.299-309
    • /
    • 2021
  • Purpose : The purpose of this study was to compare the ankle pronation squat with the general squat and investigate the effect on the geun varum and the muscles around the knee. Methods : Subjects were chosen as the target for squat exercise with the distance between the knees more than 5 cm. The selected 30 students were randomly divided into 15 pronation squat group and 15 general squat group, and performed five sets movements 20 times. Global postural system (GPS) and digital goniometer were used to check the distance between the knees and the Q angle, and muscle activity was measured with EMG during squat exercise. Results: The result is as follows. First, as a result of analyzing the change in the distance between the knees, the distance between the knees decreased and the Q angle increased in the pronation squat group after exercise. Second, as a result of analyzing the change in muscle activity of the peroneus longus, the muscle activity increased in the pronation squat group after exercise, and it was more effective than the general squat group. Third, as a result of analyzing the change in the VMO (vastus medialis oblique) and VL (vastus lateralis) muscle activity ratio, the activity ratio of the pronation squat group increased after exercise, and the imbalance in the VMO/VL muscle activity was decreased. Conclusion: The pronation squat exercise applied to the ankle will greatly affect what is made into a balanced leg as decreased of the distance between knees, increased of Q angle, increased of the muscle activity of the peroneus longus and the ratio of VMO/VL.

Peroneal Muscle and Biceps Femoris Muscle Activation During Eversion With and Without Plantarflexion in Sitting and Side-lying Postures

  • Do-eun Lee;Jun-hee Kim;Seung-yoon Han;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.18-28
    • /
    • 2024
  • Background: Lateral instability of the ankle is one of the most common causes of musculoskeletal ankle injuries. The peroneus longus (PL) and peroneus brevis (PB) contribute to ankle stability. In early rehabilitation, isometric exercises have been selected for improvement of ankle stability. To effectively train the peroneal muscles during eversion, it is important to consider ankle and body posture. Objects: This study aimed to compare activation of the PL, PB, and biceps femoris (BF) muscles during eversion in different ankle postures (neutral [N], plantarflexed [PF]) and body postures (sitting and side-lying). Methods: Thirty healthy individuals with no history of lateral ankle sprains within the last 6 months were included in the study. Maximal isometric strength of eversion and muscle activation were measured simultaneously. Muscle activation at submaximal eversion was divided by the highest value obtained from maximal isometric eversion among the four postures (percent maximal voluntary isometric contraction [%MVIC]). To examine the differences in muscle activation depending on posture, a 2 × 2 repeated measures analysis of variance (ANOVA) was conducted. Results: There were significant interaction effects of ankle and body postures on PL muscle activation and evertor strength (p < 0.05). The PL muscle activation showed a significantly greater difference in the side-lying and PF conditions than in the sitting and N conditions (p < 0.05). Evertor strength was greater in the N compared to the PF condition regardless of body posture (p < 0.05). In the case of PB and BF muscle activation, only the main effects of ankle and body posture were observed (p < 0.05). Conclusion: Among the four postures, the side-lying-PF posture produced the highest muscle activation. The side-lying-PF posture may be preferred for effective peroneal muscle exercises, even when considering the BF muscle.

Joint Position Effects on Biceps Femoris and Peroneal Muscle Activation and Ankle Evertor Strength

  • Do-eun Lee;Jun-hee Kim;Seung-yoon Han;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • Background: The peroneus longus (PL) and peroneus brevis (PB) function as the primary muscles of eversion, a movement closely associated with tibial external rotation for ankle mortise stability. Ankle motion and tibial rotation vary based on different ankle and knee positions. Objects: This study aimed to investigate the PL, PB, and biceps femoris (BF) muscle activation and eversion strength during side-lying isometric eversion exercise based on different ankle positions (neutral [N] and plantarflexion [PF]) and knee positions (90° flexion [KF] and extension [KE]). Methods: Thirty healthy adults with an Ankle Joint Functional Assessment Tool score of ≥ 22 were recruited (mean age = 24.8 ± 3.1 years). Maximal isometric eversion strength and submaximal muscle activation of the PL, PB and BF were measured during isometric eversion exercise in side-lying. A 2 × 2 repeated measures analysis of variance was performed to investigate differences in muscle activation and strength. Results: The PL and PB muscle activation showed significant main effects with the knee and ankle positions (p < 0.05); activation was greater in the KE and PF positions than in the KF and N positions. The BF muscle activation showed a significant interaction effect with knee and ankle positions, which was greater in knee extension and ankle plantarflexed (KEPF) position than in knee flexion and ankle plantarflexed (KFPF) position (p < 0.05). Eversion strength showed a significant main effect only in ankle position (p < 0.05) and was greater in the N position than in the PF position. Conclusion: The results of this study indicate that the KEPF position can be recommended to facilitate contraction of the PL and PB during side-lying eversion exercise. Furthermore, the effects of the knee-ankle positions should be considered for measuring ankle eversion strength and implementing the isometric submaximal side-lying eversion exercise.

The Effect of Lower Muscle Activities on the Sub talar Joint Mobilization and Active Exercise of Ankle Shape (발의 형태에 따른 거골하 관절 가동술과 능동운동이 하퇴 근활성도에 미치는 영향)

  • Hyong, In-Hyouk;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.3
    • /
    • pp.151-160
    • /
    • 2008
  • Purpose : The purpose of this study is to know the muscle activation after sub-talar joint mobilition and active exercise, and the low leg muscle activity through the well-balanced interaction of ankle joint around muscle. Methods : For this study 61 experimental subjects are divided into 24 people of supination foot group, pronation foot group 17 people of, 20 people of control group through navicular drop test. Surface EMG was used in order to measure the muscle activities. following is the result of the data analysis about each experiment that has been carried on a week, 2 weeks, 3 weeks, 4 weeks before, and even comparing with pre-experimental state. Results : In electromyogram study, the higher muscle activation there was before the experiment, the more muscle activation increase there was after the experiment in Tibialis Anterior, Peroneus Longus, Peroneus Brevis.(p<.05). Conclusion : This study shows the balanced activation of foot and ankle-around muscle. It shows that foot shape affects the balanced activation recovery of lower leg muscles.

  • PDF

Effect of Heel Raise Exercise with NMES on Peroneus Longus Muscle Strength and Postural Control Ability in Subjects with Functional Ankle Instability: Randomized Controlled Trial

  • Seo, Joon Ho;Lee, Jeon-Hyeong;Lee, Mi Young
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.28-33
    • /
    • 2021
  • Purpose: This study examined the effects of heel raise exercises combined with neuromuscular electrical stimulation (NMES) on the muscle strength and postural control ability of subjects with functional ankle instability (FAI). Methods: Twenty-two subjects with FAI participated in this study. They were assigned randomly to two groups: 11 each in the NMES and the sham-NMES groups. Heel raise exercise was applied, and NMES electrodes were attached to the peroneus longus muscles. The NMES group applied NMES during the heel raise exercise. NMES was applied for 20 minutes during the heel raise exercise. The heel raise exercise was performed four times a week for five weeks. The muscle strength and balance error scoring system (BESS) were measured before and after the intervention. Results: A comparison of before and after the intervention within the groups revealed improved muscle strength in the NMES and Sham-NMES groups, but the BESS was improved under all conditions only in the NMES group. The Sham-NMES group showed no improvement in the unstable support surface. Furthermore, when comparing the amount of change before and after the intervention between the groups, there were significant differences in the total score and unstable support in the BESS and muscle strength. Conclusion: NMES had a positive effect on the functional activities of the functional ankle instability subjects, such as balancing on an unstable support surface during postural control and increasing muscle strength.

The Effects of Direction Changes on the Muscular Activity of the Lower Extremities During Seated Reaching Exercises

  • Kim, Jwa-Jun;Kim, Dae-Kyung;Kim, Jae-Yong;Shin, Jae-Wook;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Purpose: Although multi-directional reaching exercises are commonly used clinically, the effects of specific movement directions on the muscle systems of the lower extremities have not been explored. We therefore investigated lower extremity muscle activity during reaching exercises with different sagittal and horizontal plane movements. Methods: The surface electromyography responses of the bilateral rectus femoris, tibialis anterior, peroneus longus, and gastrocnemius muscles were measured during reaching exercises in three directions in the horizontal plane (neutral, $45^{\circ}$ horizontal shoulder adduction, and $45^{\circ}$ abduction) and three directions in the sagittal plane (neutral, $120^{\circ}$ flexion, and $60^{\circ}$ flexion). A total of 20 healthy, physically active participants completed six sets of reaching exercises. Two-way repeated ANOVA was performed: body side (ipsilateral and contralateral) was set as the intra-subject factor and direction of reach as the inter-subject factor. Results: Reaching at $45^{\circ}$ horizontal shoulder adduction significantly increased the activity of the contralateral rectus femoris and gastrocnemius muscles, while $45^{\circ}$ horizontal shoulder abduction activated the ipsilateral rectus femoris and gastrocnemius muscles. The rectus femoris activity was significantly higher with reaching at a $120^{\circ}$ shoulder flexion compared to the other conditions. The gastrocnemius activity decreased significantly as the shoulder elevation angle increased from $60^{\circ}$ to $120^{\circ}$. Conclusion: Our results suggest that multi-directional reaching stimulates the lower extremity muscles depending on the movement direction. The muscles acting on two different joints responded to the changes in reaching direction, whereas the muscles acting on one joint were not activated with changes in reaching direction.

Comparison of Foot Muscle Activity During Short Foot and Toe Spread-out Exercises in Different Weight Bearing Conditions in Individuals With Pes Planus

  • Hyun-ji Lee;Sae-hwa Kim;Seung-min Baik;Heon-seock Cynn
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Background: Individuals with pes planus tend to overuse the extrinsic foot muscles, such as the tibialis anterior (TA) and peroneus longus (PL), to compensate for the weakened intrinsic foot muscles, such as the abductor hallucis (AbdH). Furthermore, differences in weight-bearing can affect the activity of muscles in both the intrinsic and extrinsic foot muscles. To date, no study has compared the effects of the short foot exercise (SFE) and toe spread-out exercise (TSO) on intrinsic and extrinsic foot muscle activity and the corresponding ratios in different weight-bearing positions. Objects: To compare the effects of the SFE and TSO on AbdH, TA, and PL activity and the AbdH/TA and AbdH/PL activity ratios in the sitting and standing positions in individuals with pes planus. Methods: Twenty participants with pes planus were recruited. Surface electromyography was used to assess the amplitudes of AbdH, TA, and PL activity. Participants performed both exercises while adopting both the sitting and standing positions. Results: No significant interaction between exercise and position was found regarding the activity of any muscle or ratio of the activity, except for PL activity. We observed a significant increase in AbdH activity during the TSO compared to the SFE, and no significant difference in TA and PL activity between the two exercises. AbdH, TA, and PL activity were significantly higher in the standing position than in the sitting position. Furthermore, the AbdH/PL activity ratio significantly increased in the sitting position, although there was a significant increase in AbdH activity in the standing position. Conclusion: In individuals with pes planus, we recommend performing the TSO in the sitting position, which may increase the activity of the AbdH while concurrently decreasing the activity of the TA and PL, thus strengthening the AbdH.

The Comparison of Lower Limb Muscle Activities and VMO/VLO Ratio according to Direction for Using the Ramp in the Normal Adult (정상성인에서 경사로의 사용 방향이 다리근육의 활성도 및 안쪽/가쪽넓은근의 비율에 대한 연구)

  • Lee, Sangyeol;Lee, Sukyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.3
    • /
    • pp.57-61
    • /
    • 2017
  • Purpose : The purpose of study was to find out the environmental risk factor that can be easily occurred imbalance muscle activities according to direction for using the ramp during one legged standing. Method : The subjects were 20 normal adults with a mean age of $23.15{\pm}2.14years$ and a Body Mmass Index (BMI) of $22.74{\pm}1.07$. Participants were measured muscle activities on vastus medialis, vastus lateralis, tibialis anterior, peroneus longus during one legged stance at four conditions ramp (down ramp, up ramp, medial ramp, lateral ramp). The statistical analyses were performed using IBM SPSS(Ver. 23) and p-value less than .05 were considered statistically significant for all cases. Result : In this study, the activity of the lower extremity muscle and the ratio of the vastus medial and lateral muscles according to the direction of use of the ramp were investigated. The changes in the muscle activity of the lower limbs along the direction of the ramp were significantly different between the vastus medial muscle and the peroneus longus muscle. Conclusion : For a short time on a ramp or a pedestrian crossing, a clerk in a ramp can move or stand by placing the lower limbs in various directions, but if performed in consideration of the individual's disease characteristics or unstable foot position, It is thought that there will be an effect to prevent on the ankle and knee unstability.