• Title/Summary/Keyword: Permeation Grouting

Search Result 27, Processing Time 0.028 seconds

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis

  • Wang, You;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.279-288
    • /
    • 2020
  • The permeation grouting is a commonly used technique to improve the engineering geology condition of the soft ground. It is of great significance to predict the permeation range of the grout so as to ensure the effects of grouting. This paper conducts a theoretical analysis of jet-grouting effects in ground improvement and rotary grouting pile installation by utilizing deformation-permeation coupled poroelastic solutions based on Biot's theory and Laplace-Fourier integral transform technique. The exponential function and the intermittent trigonometric function are chosen to represent time-dependent grouting pressure usually encountered in ground improvement and rotary grouting pile installation process, respectively. The results, including the radial displacement, the hoop stress, the excess pore fluid pressure, the radial discharge, and the permeation radius of grout, are presented for different grouting time, radial positions and grouting lengths. Parametric study is conducted to explore the effects of variation of the exponent in the exponential grouting pressure-time relationship on grouting-induced responses. It is expected that the proposed solutions can be used to estimate the permeation range of grouting in ground improvement and rotary grouting pile installation.

Estimation of the Anisotropic Material Properties of Rock Masses with Permeation Grouting (그라우팅 강화터널의 설계 특성치 산정에 관한 연구)

  • Lee, Jun Seok;Bang, Chun Seok;Choe, Il Yun;Eom, Ju Hwan
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.67-80
    • /
    • 1999
  • The Grout-reinforcement technique which is widely used during the excavation of a shallow or an endangered tunnel can be classified into a couple of groups according to the properties and injection methods of the grout. The reinforcement design will, therefore, take a different approach based on the grouting method under consideration. However, the injection procedure is mainly performed by the experience of the foreman rather than engineering judgement , specifically the permeation grouting through the rock joints and its reinforcement effect Is not fully under-stood during the design stage, In this study, the anisotropic material properties of the grout-reinforced rock masses are derived from the concept of composite materials and the effect of intact rock, vertical grouting and permeation grouting is, therefore, fully accounted for. Through the parametric studies on the characteristics of rock joints, intact rock and grouting materials, various case studies have been considered. The results, illustrated via the design charts, can be directly used during the reinforcement design.

  • PDF

The Injection Characteristics and Environmental Effects for Grouting Materials (지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구)

  • Chun, Byung-Sik;Lee, Jae-Young;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.37-49
    • /
    • 2002
  • In this study, it is performed that mix design of grouting materials which high strength, durability and environmentally safe materials for 2 types of suspension, solution grouting. The laboratory model tests such as permeation, solidification tests are performed to find injection effects by the injection pressure, soil condition. And environmental effects of the grouting materials is analyzed through the heavy-metal leaching tests. From the results, micro cement of suspension grouting superior permeation, solidification injection to Portland cement, and phosphoric acid and sodium hydrogen carbonate in solution grouting were similar to micro cement of suspension grouting. When compare to strength of grouted soils, micro cement of suspension grouting showed high compression strength to Portland cement. While, solution grouting showed very low compression strength comparing suspension grouting. Also, in the heavy-metal leaching tests results were satisfied with the environmental regulation standard for raw grouting materials and grouted soil by 7, 14, 28days curing.

  • PDF

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

The Injection Characteristics and Environmental Effects for Grouting Materials Based on Cement (시멘트계 주입재 종류별 주입 특성 및 환경적 영향 연구)

  • 천병식;이재영;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.159-170
    • /
    • 2003
  • In this study, the mixed design of grout with hish strength.high permeation.high durability and environmental stability as the state of the art in material field was performed. Also, the subjects of grouting, grouting effects for ground conditions, and environmental effects were analyzed. According to these results, the fundamental data will be suggested as a design of grouting in the field application. The physical, mechanical and chemical characteristics with particle shape of the grouts were analyzed. Then, the gel-time of grouts, which is essential for workability and permeation range, were controlled. Also, the laboratory model grouting tests were performed to find the characteristics of solidification, permeation and durability with grouts. The ordinary portland, slag and microcement which have been used in the construction field were evaluated fur the environmental effects. To find the leaching of $Cr^{6+}$characteristics in cement grouts, $Cr^{6+}$ leaching tests were performed for the raw materials. Also, the results of leaching test were shorn by surrounding environment. Then, the unconfined compression strength tests were performed with the homo-gel samples, and the amount of changed $Cr^{6+}$ was measured by curing solution.

Behavior of cement-based permeation grouting in cohesionless soil considering clogging phenomena (폐색효과를 고려한 사질토의 시멘트 침투 그라우팅 거동 특성)

  • Seo, Jong-Woo;Lee, In-Mo;Kim, Byung-Kyu;Kwon, Young-Sam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • The behavior of cement-based permeation grouting is divided into three different groups depending on the grain size distribution of the soils: (1) zone of cement-based permeation grouting not feasible; (2) zone of cement-based permeation grouting feasible; and (3) zone in which an accelerating agent should be added to limit the penetration depth. In the cement-based permeation grouting feasible zone, the concept of a representative pore radius was proposed. The ratios of the representative pore radius to the mean pore radius were obtained by performing laboratory test and comparing with clogging theory; these values were in the range of 1.07 and 1.35 depending on the grain size distribution of the soils. In addition, a functional relationship between the lumped parameter (${\theta}$), the representative pore radius and the w/c ratio were derived by comparing and matching experimental results with predictions from theory. In the zone in which the accelerating agent should be added, the controlling process of gel time to limit the penetration depth was experimentally verified. The test results matched well with those obtained from theory utilizing the developed grout penetration program on condition that the viscosity increasing tendency of grout suspension with time is properly taken into account.

Clogging theory-based real time grouting management system applicable in soil conditions

  • Kwon, Young-Sam;Kim, Jinchun;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • In this study, a real-time grouting management system based on the clogging theory was established to manage injection procedure in real time. This system is capable of estimating hydraulic permeability with the passage of time as the grout permeates through the ground, and therefore, capable of estimating real time injection distance and flow rate. By adopting the Controlled Injection Pressure (CoIP) model, it was feasible to predict the grout permeation status with the elapse of time by consecutively updating the hydraulic gradient and flow rate estimated from a clogging-induced alteration of pore volume. Moreover, a method to estimate the volume of the fractured gap according to the reduction in injection pressure was proposed. The validity of the proposed system was successfully established by comparing the estimated values with the measured field data.

Effect analysis by time passage after Repair & Reinforcement of Fill Dams (필댐 보수보강후 시간경과에 따른 효과 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Im, En-sang;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.697-703
    • /
    • 2008
  • Excessive water leakage phenomenon happens through damage of nation core zone of about 17,000 storage of water facilities or collapse of dam is worried, is being damaged or enforce dilapidated fill dam core zone's repair reinforcement. Example that use grouting method of construction considering construction and economic performance etc. recently by repair reinforcement way about defect of dam is increased. Permeation grouting method repair & reinforcement of fill dam countermeasure is preferred in nation. Do that is economical to decide these repair reinforcement effect and grouting effect estimation method that do not give damage to dam is effective. Therefore, observing electricity resistivity Survey change of dam since grouting reinforcement using Electric resistivity Survey inquiry of seismic survey method in this research, Wished to verify grouting effect whether is possible as Electric resistivity Survey, and study whether integrity of dam through repair reinforcement defined.

  • PDF

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF

Grouting Injection Effectiveness of a Permeable Compacting Grout using Permeable Compaction Type Packer (침투다짐형 팩커를 이용한 침투다짐 그라우트의 주입 효과)

  • Park, Sung-Yong;Shim, Houng-Gen;Kang, Hee-Jin;Lim, One-Bin;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Permeating injection is commonly known as an ideal type of injection in grouting reservoir embankment, yet often-combined permeating and fracturing injection grouting operation can disturb the original soil. A grouting method has been regarded as effective and developed to ameliorate the possible disturbance problem. It involves compaction grouting with low expansive pressure near the injection hole and repetitive injection and compaction with grout material that allows ideal permeating injection. This thesis develops Hybrid Grout (ie. HG grout) that allows various application in any ground condition combined together, has high fineness and low viscosity, and expands permeation injection to silty sand. It researches on the injection effect of permeable compaction grout which is done with PC packer and is a combination of HG grout and expansion agent to obtain permeation compaction effect on the area near grout injection spot by developing Permeable Compaction Type Packer(ie. PC packer). As the developed PC packer, HG grout, and and expansion agent (HI-E) are applied to reservoir embankment reinforcement grouting, possibile permeation compaction effect that satisfies reservoir embankment grouting standard is confirmed according to the research.