• Title/Summary/Keyword: Permeate water quality

Search Result 50, Processing Time 0.021 seconds

Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling

  • Yunos, Khairul Faezah Md;Mazlan, Nurul Ain;Naim, Mohd Nazli Mohd;Baharuddin, Azhari Samsu;Hassan, Abdul Rahman
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.263-270
    • /
    • 2019
  • Palm oil mill effluent (POME) is the largest pollutant discharged into the rivers of Malaysia. Thus UF membrane study was conducted to investigate the effect of pressure and stirring speed on performance of POME treatment and fouling of membrane. Two types of membrane polyethersulfone (PES) and regenerated cellulose (RC) with molecular weight cut-off (MWCO) 5 and 10 kDa were used in this study. Results showed that, as pressure increased, fouling increased however permeate quality improved, the best pressure was 1.0 bar, where the fouling was not too high and produce good permeate quality. As stirring speed increased, fouling reduced and permeate quality improved, however, when stirring speed increased from 600 rpm to 800 rpm, there was no significant improvement on the permeate quality. Therefore, the best condition was at 1.0 bar and 600 rpm. PES membrane with MWCO 5 kDa showed the best permeate quality, even fouling slightly higher than RC membrane. The permeate quality obtained were analyzed in term of dissolved solid, turbidity, suspended solid, biological oxygen demand ($BOD_5$) and chemical oxygen demand (COD) were 538 mg/L, 1.02 NTU, < 25 mg/L, 27.7 mg/L and 62.8 mg/L, respectively with dominant type of fouling is cake resistance. Thus, it can be concluded water reuse standard was successfully achieved in terms of $BOD_5$ and suspended solid.

Water Treatment of High Turbid Source by Tubular Ceramic Microfiltration with Periodic Water-back-flushing System

  • Lee, Hyuk-Chan;Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • We performed periodic water-back-flushing using permeate water to minimize membrane fouling to enhance permeate flux in tubular ceramic microfiltration system for water treatment of high turbid source. The filtration time (FT) = 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume $(V_T)\;=\;6.805L$. Also in the result of BT effect at fixed FT = 10 min and BT (back-flushing time) = 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_o$, and we could obtain the highest $V_T\;=\;6.660\;L$. Consequently, FT = 2 min and BT = 6 sec could be the optimal condition in water treatment of high turbid source above 10 NTU. However, FT = 10 min and BT = 20 sec was superior to reduce operating costs because of lower back-flushing frequency. Then the average quality of water treated by our tubular ceramic MF system was turbidity of 0.07 NTU, $COD_{Mn}$ of 1.86 mg/L and $NH_3-N$ of 0.007 mg/L.

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.

Evaluation of effects of textile wastewater on the quality of cotton fabric dye

  • Kaykioglu, Gul;Ata, Reyhan;Tore, Gunay Yildiz;Agirgan, Ahmet Ozgur
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • In this study, reuse of biologically treated wastewater of denim washing and dyeing industry has been evaluated by membrane technologies. After that experiments were carried out at laboratory scale in textile dyeing unit by using obtained permeate water samples on 100% cotton based raw fabric belonging to examined industry. During membrane experiments, two different UF (UC100 and UC030) and two different NF (NP010 and NP030) were evaluated under alternative membrane pressures. In permeate water obtained on selected samples, conductivity at the range of $1860-2205{\mu}S/cm$, hardness at the range of 60 to 80 mg/L, total color at the range of 2.4 to 7.6 m-1 and COD at the range of 25-32 mg/L was determined. The following analyzes were performed for the dyed fabrics: perspiration fastness, rub fastness, wash fastness, color fastness to water, color fastness to artificial light, color measurement through the fabric. According to analysis results, selected permeate water have no negative impact on dyeing quality. The study showed that membrane filtration gave good performance for biologically treated textile wastewater, and NF treatment with UF pre-treatment was suitable option for reuse of the effluents.

Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment (철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Yoshimasa, Watanabe;Choi, Yongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

Application of nanofiltration membrane for the River Nile water treatment in Egypt: Case study

  • Jamil, Tarek S.;Shaban, Ahmad M.;Mansor, Eman S.;Karim, Ahmed A.;El-Aty, Azza M. Abd
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.233-243
    • /
    • 2018
  • In this manuscript, $35m^3/d$ NF unit was designed and applied for surface water treatment of the River Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and $7m^3/d$, feed pressure 2.68 bar and flux rate $37.7l/m^2h$. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane.

The Effect of Sea Water Containing Heavy Oil on RO Membrane (유탁해수의 RO막에 대한 영향)

  • Cho, Bong-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • An experimental study regarding the effect of emulsions on RO is presented. Heavy oil was added to the sea water and the distilled water separately and treated for 30 minutes by a homogenizer to make emulsions. For the case of the sea water without heavy oil the permeate decreased from the beginning of the experiment. Chloride and conductivity increased with time, due to the fouling occurring as the suspended solids in the sea water accumulated on the membrane surface. Rejection rate of salt was 99.6~99.7%. As for the sea water containing heavy oil, the permeate decreased slowly from the beginning of the experiment. This result was the same for the case of the sea water only. However. chloride and conductivity increased significantly when heavy oil was added. In the second experiment with sea water containing heavy oil, the operation time of RO was reduced considerably. With addition of oil, the chloride increased greatly, while the permeate reduced comparatively. In the experiment where emulsion of $0.3{\sim}0.8mg/{\ell}$ was supplied to RO. oil concentration was about 10ppb in the permeate at the end of the experiment. In case of the distilled water containing heavy oil. the conductivity increased. However. the permeate reduced to 30% compared to the case of the sea water containing heavy oil. The case of sea water containing heavy oil showed an opposite result, but the effect of the addition of oil on RO was significant. Oil caused fouling of the RO and the contamination of the whole system, and as the result the system could not be operated properly. As a result the membrane capacity, the amount and water quality of permeate deteriorated significantly.

  • PDF

Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane (나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용)

  • Lee, Jin;Yun, Byeong Gweon;Han, Kyoung Gu;Lee, Seung Hoon;Kim, Cheol Hyeon;Kim, Chan;Lee, Yunho;Lee, Dongwhi;Lee, Seunghyeok;Kim, Kyoung-Woong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2021
  • Gravity-driven membrane (GDM) filtration system based on the nanofiber membrane was investigated. This system can be operated with little energy demand due to a gravitational pressure-driven filtration and biological fouling control strategy. Moreover, the optimal module configuration based on the high permeance of nanofiber membrane can provide a significantly high water productivity. In order to evaluate its applicability potential, the pilot-scale (3000-5000 L/day) systems with nanofiber membranes were operated in developing countries (Kiribati and Tuvalu). Our results showed that the 14-92 L/(m2×h) of the permeate flux was determined indicating a stabilized water productivity. In addition, the permeate water indicated a high removal rate (more than 99.99%) of turbidity and bacteria. Consequently, the system can provide a stabilized water production with safe permeate water quality during long-term operation. These findings exemplify an effective approach to decentralized drinking water treatment for developing countries.

Desalination of Seawater by Reverse Osmosis (역삼투법에 의한 해수의 담수화에 관한 연구)

  • Lee, Sun Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.155-164
    • /
    • 2004
  • Many countries, including Korea, suffer from a shortage of freshwater. With increases in population and the quality of life, along with large-scale expansion in industrial and agricultural activities, more freshwater is needed. Available resources, Including ground water, are limited, and desalination presents the opportunity for a new unlimited source of freshwater from the sea. The objectives of this study were to test membrane performance in seawater desalination and to examine the quality of water produced. bath well and sea water were used as water sources. Typically used membrane for seawater desalination and high rejection seawater desalination membrane are maintained at almost same recovery rate and permeate flux, while the conductivity was lower in the operation of typically used seawater membrane. The treated water quality using two types of membranes is satisfied with the Korea drinking water quality standards.

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.