• Title/Summary/Keyword: Permeate Flux

Search Result 305, Processing Time 0.023 seconds

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Membrane Degassing Process of Sweep Gas-vacuum Combination Type for Ammonia Removal (스윕 가스-진공 혼합식 탈기막 시스템을 활용한 암모니아 제거)

  • Yoon, Hongsik;Min, Taijin;Lee, Gunhee;Kim, Hyoung-Tak;Shin, Wanho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.835-842
    • /
    • 2022
  • In this study, the membrane degassing process of the sweep gas - vacuum combination type was proposed for ammonia wastewater treatment. The effect of pH, initial ammonia concentration and scale-up on ammonia degassing performance was investigated. As a result, as the pH and the initial ammonia concentration increased, the degassing permeate flux was improved. On the other hand, the ammonia mass transfer coefficient increased as the initial ammonia reduced, which seems to be due to the driving force of the sweep gas-vacuum combination type membrane degassing system proposed in this study. In addition, 80 mg NH3/min of the ammonia degassing rate was achieved using a 6×28 inch size module. Better degassing performance is expected if consideration for maintaining vacuum pressure is involved in the scale-up design.

Effect on Physiological Metabolism of Calcium Ion at Cell Membrane Model of Parathyroid which Irradiated by High Energy X-ray (고에너지 엑스선을 조사한 부갑상선의 세포막모델에서 칼슘이온의 생리학적 대사에 미치는 영향)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2022
  • The initial co-transport and counter-transport permeate transport characteristics of calcium ion at epithelial cell membrane model in parathyroid which irradiated by high energy x-ray(linac 6 MV) was investigated. The epithelial cell membrane model used in this experiment was a polysulfonated copolymerized membrane of poly(PS-DVB: polystyrene-divinylbenzene). The difference of sorbed water in membrane, fixed carrier concentration(SO32-), initial pH value, OH- concentration were occurred at difference of Ca2+concentration and quantity of parathyroid hormone, respectively. The initial co-transport and counter-transport permeate flux of Cl-, OH-, Ca2+ on fixed carrier concentration(SO32-) and initial pH value of irradiated membrane was found to be decreased than non-irradiated membrane. The initial co-transport and counter-transport permeate flux of Ca2+ on fixed carrier concentration (SO32-), initial pH value, OH- concentration in irradiated membrane were found to be decreased about 2.68 ~ 6.87 times, about 1.42 ~ 1.63 times, about 2.07 ~ 1.672 times than non-irradiated membrane, respectively. As a result, the quantity of parathyroid hormone was decreased at irradiated membrane than non-irradiated membrane. The decrease of parathyroid hormone was occurred at hypoparathyroidism and osteoporosis, parathyroiditis, and so on. As the parathyroid hormone in epithelial cell membrane model were abnormal, cell damages were appeared at cell.

Preparation of Polyethersulfone Ultrafiltration Membranes Containing $ZrO_2$ Nanoparticles by Combining Phase-inversion Method/Sol-gel Technique (상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조)

  • Youm, Kyung-Ho;Lee, Yun-Jae
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.303-312
    • /
    • 2006
  • The asymmetric hybrid membranes of polyethersulfone (PES) and $ZrO_2$ nanoparticles were prepared via new one-step procedure combining simultaneously the phase-inversion method and the sol-gel technique. The optimum contents of $Zr(PrO)_4\;and\;HNO_3$ catalyst were determined by the adsorption experiments of phosphate anion onto the resulting hybrid membranes. The maximum adsorption of phosphate anion is obtained at the conditions of 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES and 30 mL $HNO_3$ addition per 1 mL $Zr(PrO)_4$. Variation of morphology, performance and incorporated $ZrO_2$ amount of the resulting hybrid membranes were discussed and determined using SEM, pure water flux, TGA, ICP, XRD and contact angle measurements. Increasing $Zr(PrO)_4$ addition into casting solution, pure water flux is increased and $ZrO_2$ amount in the hybrid membrane is maximized at the conditions 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES. The prephosphatation of PES-$ZrO_2$ hybrid membrane was studied to modify the surface characteristics of membrane. Ultrafiltration of bovine serum albumin (BSA) solution was performed in a dead-end cell using both a bare (non-phosphated) and a phosphated hybrid membrane. It is revealed that both the permeate flux and BSA rejection were increased as about 40% by prephosphatation of hybrid membrane. These results may be explained on the basis of the increase of membrane hydrophilicity, which was determined from contact angle measurements.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Protein Solution Using Blocking Filtration Model (막힘여과 모델에 의한 단백질 용액의 막여과에서 자연대류 불안정 흐름의 막오염 제어 효과 해석)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.18-29
    • /
    • 2019
  • The dead-end ultrafiltration (UF) of BSA protein solution was performed to investigate the defouling effects of natural convection instability flow (NCIF) induced in membrane module. The permeate fluxes were measured according to the inclined angles ($0{\sim}180^{\circ}$) of membrane module with respect to gravity, and analyzed using the blocking filtration model. NCIF are more induced as the inclined angles increased from $0^{\circ}$ to $180^{\circ}$, and the induced NCIF enhances flux. Comparing the fluxes at $0^{\circ}$ inclined angle (no NCIF induction) and $180^{\circ}$ (maximum NCIF induction), the flux enhancements by NCIF induction are increased about 5 times in the short-term UF operation (2 hours) and about 17 times in the long-term operation (20 hours). As applying the blocking filtration model, it is more suitable to analyze the flux results by using the intermediate blocking model in the early times of UF operation within 15 minutes and then thereafter times by using the cake filtration model. NCIF induced at $180^{\circ}$ inclined angle reduces the intermediate blocking fouling at about 67% in the early times operation and thereafter the cake layer fouling at about 99.9%. The main defouling mechanism of NCIF induced in the membrane module is suppress the formation of protein cake layer.

Reuse and Concentration of Sewage by Forward Osmosis Using Fertilizer as Draw Solution (비료 유도용액의 정삼투를 이용한 하수의 재이용 및 농축)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.122-131
    • /
    • 2019
  • In order to reuse and concentrate the sewage, a forward osmosis using fertilizer as draw solution was applied. Sewage-1, which is the supernatant after settling for 30 minutes for the primary settling basin influent, and Sewage-2, which is the supernatant after settling for 30 minutes for the effluent, and Sewage-3, which is the filtrate filtered through a $1{\mu}m$ cartridge filter for the effluent were tested. Eight draw solutions of $NH_4H_2PO_4$, KCl, $KNO_3$, $NH_4Cl$, $(NH_4)_2HPO_4$, $NH_4NO_3$, $NH_4HCO_3$, and $KHCO_3$ were used in consideration of osmotic pressure, solubility and pH. In the case of Sewage-3, the permeate flux was almost similar to that of the discharge water of the sewage treatment plant, and was larger than that of Sewage-1 and Sewage-2. $NH_4H_2PO_4$ was the smallest, and $NH_4NO_3$ was the largest in the specific reverse solute flux. $NH_4H_2PO_4$ was found to be most useful for the reuse and concentration of sewage because it contains nitrogen and phosphorus, which are the major components of fertilizer, as well as low specific reverse solute flux. When $NH_4H_2PO_4$ was used as the draw solution, the concentration factor after 24 hours for Sewage-3 was 1.72.

Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Water Back-flushing Period and Time (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 물 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Park, Sung Woo;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.267-277
    • /
    • 2013
  • The effect of water back-flushing period (FT) and water back-flushing time (BT) was compared with the previous study of nitrogen back-flushing in viewpoints of resistance of membrane fouling ($R_f$), permeate flux (J), and total permeate volume ($V_T$) in hybrid process of tubular ceramic microfiltration and PES (polyethersulfone) beads loaded $TiO_2$ photocatalyst for advanced drinking water treatment. As FT decreasing, Rf decreased, but J and $V_T$ increased. Turdity treatment efficiency was the maximum at NBF (no back-flushing) and increased a little as FT decreasing in both water and nitrogen back-flushing. Organic matter treatment efficiency was the maximum at FT 4 min in water back-flushing, but increased as FT decreasing in nitrogen back-flushing. As BT increasing, Rf and resistance of reversible membrane fouling ($R_{rf}$) decreased, but J and $V_T$ increased. The turdity treatment efficiency was almost constant beyond 98% in water back-flushing, but increased as BT increasing except NBF in nitrogen. The organic matter treatment efficiency was the maximum at BT 6 sec in water back-flushing, but increased as BT increasing except NBF in nitrogen. The $V_T$ was the maximum at BT 30 and FT 2 min, and optimal condition was BT 30 sec per FT 2 min in this experimental range.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 1. Effects of Photocatalyst and Water-back-flushing Condition (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 1. 광촉매 및 물역세척 조건의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • The effects of $TiO_2$ photocatalyst coating bead concentration, water-back-flushing period (FT), and back-flushing time (BT) were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for advanced drinking water treatment in this study. Photocatalyst coating bead concentration was changed in the range of 10~40 g/L, FT in 2~10 min and BT in 6~30 sec. Then, we observed the effects on resistance of membrane fouling $(R_f)$, permeate flux (J) and total permeate volume $(V_{\Upsilon})$ during total filtration time of 180 min. As decreasing photocatalyst coating bead concentration, $R_f$ increased and J decreased. $V_{\Upsilon}$ was the highest value of 8.85 L at 40 g/L of photocatalyst coating bead concentration. At FT change experiment, $R_f$ decreased and J increased as decreasing FT. Then $R_f$ decreased and J increased according to increasing BT at BT change experiment. Because at NBF (no back-flushing) dramatic membrane fouling reduced membrane pore size, turbid and dissolved organic matters ($UV_{254}$ absorbance) could be removed efficiently. Therefore, treatment efficiencies of turbidity and dissolved organic matters were the highest at NBF. Then by cleaning effect of photocatalyst coating bead, the treatment efficiencies of turbidity and dissolved organic matters increased as decreasing FT and increasing BT.