• Title/Summary/Keyword: Permeability materials

Search Result 1,062, Processing Time 0.019 seconds

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.

Evaluation of the Radioimmunotherapy Using I-131 labeled Vascular Endothelial Growth Factor Receptor2 Antibody in Melanoma Xenograft Murine Model (흑색종에서의 I-131표지 혈관내피세포성장인자 수용체2항체를 이용한 방사면역치료 평가)

  • Kim, Eun-Mi;Jeong, Hwan-Jeong;Park, Eun-Hye;Cheong, Su-Jin;Lee, Chang-Moon;Jang, Kyu-Yun;Kim, Dong-Wook;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • Purpose: Vascular endothelial growth factor (VEGF) and its receptor, fetal liver kinase 1 (Flk-1), play an important role in vascular permeability and tumor angiogenesis. The aim of this study is to evaluate the therapeutic efficacy of $^{131}I$ labeled anti-Flk-1 monoclonal antibody (DC101) on the growth of melanoma tumor, which is known to be very aggressive in vivo. Materials and Methods: Balb/c nude mice were injected subcutaneously with melanoma cells in the right flank. Tumors were allowed to grow up to $200-250\;mm^3$ in volume. Gamma camera imaging and biodistribution studies were performed to identify an uptake of $^{131}I$-DC101 in various organs. Mice with tumor were randomly divided into five groups (10 mice per group) and injected intravenously; control PBS (group 1), $^{131}I$-DC101 $50\;{\mu}g/mouse$ (group 2), non-labeled DC101 $50\;{\mu}g/mouse$ (group 3), $^{131}I$-DC101 $30\;{\mu}g/mouse$ (group 4) and $15\;{\mu}g/mouse$ (group 5) every 3 or 4 days for 20 days. Tumor volume was measured with caliper twice a week. Results: In gamma camera images, the uptake of $^{131}I$-DC101 into tumor and thyroid was increased with time. Biodistribution results showed that the radioactivity of blood and other major organ was gradually decreased with time whereas tumor uptake was increased up to 48 hr and then decreased. After 4th injection of $^{131}I$-DC101, tumor volume of group 2 and 4 was significantly smaller than that group 1. After 5th injection, the tumor volume of group 5 also significantly reduced. Conclusion: These results indicated that delivery of $^{131}I$ to tumor using FlK-1 antibody, DC101, effectively blocks tumor growth in aggressive melanoma xenograft model.