• Title/Summary/Keyword: Permeability Parameter

Search Result 124, Processing Time 0.034 seconds

Nondestructive Evaluation for Remanent Life of 1Cr-0.5Mo Steel by Reversible Permeability

  • Ryu, Kwon-Sang;Lee, Yun-Hee;Park, Jong-Seo;Baek, Un-Bong
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.206-209
    • /
    • 2012
  • Peak interval for reversible permeability is presented for nondestructively evaluating the remanent life of 1Cr-0.5Mo steel. The method to measure the peak interval of reversible permeability is based on the value of reversible permeability is the same as the differential value of the hysteresis loop. The measurement principle is based on the first harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to a frequency of the exciting voltage. Results obtained for the peak interval of reversible permeability and Rockwell hardness on the aged samples decrease as aging time and the Larson-Miller parameter increase. We could estimate the remanent life of 1Cr-0.5Mo steel by using the relationship between the peak interval of reversible permeability and the Larson-Miller parameter, nondestructively.

Identification of the strain-dependent coefficient of permeability by combining the results of experimental and numerical oedometer tests with free lateral movement

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The key parameter that affects the consolidation process of soil is the coefficient of permeability. The common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental results to validate our numerical model and to define the model input parameter. Finally, by combining the experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability.

High Frequency Permeability Measurement of Magnetic Films (자성막의 고주파 투자율 측정)

  • Choi, Hyung;Jang, Kyung-Do;Kwon, Sang-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 1995
  • We introduced and compared the two methods, 'figure-8 coil method' and 's-parameter method', to measure high frequency permeability of magnetic films. We made a permeameter by using s-parameter method and discussed about problems and solutions in measuring permeability. We can measure the permeability rapidly and exactly up to 200 MHz with the aid of computer program and the low level permeance detection limit is about $1\mu\textrm{m}$.

  • PDF

Comparison of Methods to Calculate Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수계수 계산 방법의 비교)

  • Suh, Kyung-Duck;Ji, Chang-Hwan;Kim, Yeul-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.506-509
    • /
    • 2008
  • Mathematical models have been developed to calculate hydrodynamic characteristics of perforated-wall structures. Most of the models separate the fluid regions into front and back of the wall, assume the solution in each region, and calculate the solution by using the matching condition at the wall. The matching condition involves the permeability parameter, which can be calculated by the methods proposed by Mei et al. or Sollitt and Cross. In this study, we compare these two methods. The former is advantageous because all the related variables are known, but it gives wrong result in the limit of long waves, i.e. zero transmission and perfect reflection of very long waves. In deep water, the latter predicts smaller transmission and larger reflection than the former, and vice versa in shallow water. In the latter method, the friction coefficient decreases as the wall thickness or the porosity of the wall increases.

  • PDF

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

Asymptotic Expansion Homogenization of Permeability Tensor for Plain Woven Fabrics (평직에 대한 투과율 계수의 균질화)

  • Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.134-136
    • /
    • 2005
  • Homogenization method is adopted to predict the permeability tenor for glass fiber plain woven fabrics. Calculating the permeability tensor numerically is an encouraging task because the permeability tensor is a key parameter in resin transfer molding (RTM). Based on multi-scale approach of the homogenization method, the permeability for the micro-unit cell within fiber tow is computed and compared with that obtained from flow analysis for the same micro-unit cell. It is found that they are in good agreement. In order to calculate the permeability tensor of macro-unit cell for the plain woven fabrics, the Stokes and Brinkman equations which describe inter-tow and intra-tow flow respectively are employed as governing equations. The effective permeabilities homogenized by considering intra-tow flow are compared with those obtained experimentally. Control volume finite element method (CVFEM) is used as a numerical method. It is shown that the asymptotic expansion homogenization method is an attractive method to predict the effective permeability for heterogeneous media.

  • PDF

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

Experimental study of the effect of microstructure on the permeability of saturated soft clays

  • Chen, Bo;Sun, De'an;Jin, Pan
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • The effect of microstructure on the permeability of two saturated marine clays was studied through a series of falling head permeability tests and mercury intrusion porosimetry (MIP) tests. The key findings from this experimental study include the following results: (1) The permeability of undisturbed specimens is larger than that of reconstituted specimens at the same void ratio due to different soil fabrics, i.e., the pore size distributions (PSDs), even though they have the similar variation law in the permeability versus void ratio. (2) Different permeabilities of undisturbed and reconstituted specimens at the same void ratio are mainly caused by the difference in void ratio of macro-pores based on the MIP test results. (3) A high relevant relation between $C_k$ ($C_k$ is the permeability change index) and $e*_{10}$, can be found by normalizing the measured data both on undisturbed or reconstituted specimens. Hence, the reference void ratio $e*_{10}$, can be used as a reasonable parameter to identify the effect of soil fabric on the permeability of saturated soft clays.