• Title/Summary/Keyword: Permanent plastic deformation

Search Result 29, Processing Time 0.023 seconds

Inelastic behavior of standard and retrofitted rectangular hollow sectioned struts -I: Analytical model

  • Boutros, Medhat K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • This paper is a presentation of a physical model for the elastic-partly plastic behavior of rectangular hollow section pinned struts subjected to static cyclic axial loading and the evaluation of the compressive strength of retrofitted damaged struts. Retrofitting is achieved by welding stiffening plates along the webs of damaged struts. The shape of the elastic and permanent deformations of the strut axis satisfy the conditions at the ends and midspan. Continuous functions of the geometric variables of stress distributions in the yielded zone are evaluated by interpolation between three points along each partly plastic zone. Permanent deformations of the partly plastic region are computed and used to update the shape of the unloaded strut. The necessity of considering geometric nonlinearity is discussed. The sensitivity of the results to the location of interpolation points, the shape of the permanent deformation and material hysteretic properties is investigated.

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Effect of Deformation Temperature on Crystal Texture Formation in Hot Deformed Nanocrystalline SmCo5 Permanent Magnets

  • Ma, Q.;Yue, M.;Lv, W.C.;Zhang, H.G.;Yuan, X.K.;Zhang, D.T.;Zhang, X.F.;Zhang, J.X.;Gao, X.X.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.25-28
    • /
    • 2016
  • In the present study, bulk anisotropic nanocrystalline $SmCo_5$ magnets were prepared by hot deformation. The effect of deformation temperature on the texture and magnetic properties are presented, based on which the mechanism of plastic deformation and texture formation during the hot deformation process is discussed. Our analyses reveal that deformation temperature is one of the most important parameters that determine the texture of $SmCo_5$ grains. We suggest that diffusion creep plastic deformation occurs during hot deformation, which is very sensitive to the energy gain provided by an increase in temperature.

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Response Analysis of Buried Pipelines Considering Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 의한 매설관로의 거동 특성 해석)

  • 김태욱
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.184-191
    • /
    • 2000
  • In this research, a numerical model is developed for analysis of buried pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are medeled as continuous pipelines using the beam elements and a series of elasto-plastic springs uniformly distributed along the pipelines, respectively. Idealized various PGD patte군 based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as a loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Results show that response of buried pipelines are more affected by pipe thickness than pipe diameter. Finally, the critical length of the lateral spread zone and the critical magnitude of PGD which cause yielding, local buckling or tension failure are proposed for the steel pipe which are normally used in Korea.

  • PDF

Heat Treatment of Stator Core in Permanent Magnet Type Motor for Reduction of Friction Torque and Analysis of Their Cause (영구자석형 모터의 프릭션 토크 저감을 위한 고정자 철심의 열처리 및 발생원 분석)

  • Ha, Kyung-Ho;Lim, Yang-Su;Kwon, Oh-Yeoul;Kim, Ji-Hyun;Kim, Jae-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1752-1758
    • /
    • 2008
  • This paper deals with the reduction of friction torque in permanent magnet motors by using the heat treatment of stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress acting on the edge of stator tooth induces significant plastic and elastic deformation and then cause the change of magnetization properties. Then, the mechanical and magnetic unbalance in the sheared region of stator tooth produced by material cutting has influence on the friction torque. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation, and then proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions (몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구)

  • Lee, Kanghun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.

Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process (가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어)

  • Cho, J.Y.;Park, S.M.;Hussain, J.;Song, M.S.;Kim, T.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.