• Title/Summary/Keyword: Permanent Synchronous Generator

Search Result 219, Processing Time 0.041 seconds

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator (고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계)

  • Kim, Youngmin;Kim, Jungsu;Park, Sunho;Lim, Minsoo;Bang, Johyug;Ryu, Jiyune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.

Alternative Design of 3MW Offshore PM Synchronous Generator (해상용 3 MW 영구자석형 동기발전기의 대안설계)

  • Kim, Dong-Eon;Lee, Hong-Gi;Han, Hong-Sik;Jung, Yung-Gyu;Suh, Hyung-Suck;Chung, Chin-Wha;Lim, Min-Soo;Kwak, Seung-Keun;Oh, Man-Soo;Choi, June-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

Design and Characteristics Analysis of the 78 kWe Grade Synchronous Generator for Disused Diesel Engines

  • Youn, Jun-Seop;Kim, Hae-Joong;Kim, Youn-Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.122-132
    • /
    • 2017
  • This study dealt with the design process of the 78 kW permanent magnet synchronous generator for engines. After the calculation of the basic dimensions through a theoretical method in the process of initial model design, FEA (finite-element analysis) and a d,q-axis equivalent circuit were used to identify the generator characteristics depending on the number of poles. With the use of the space harmonic analysis method, the back-EMF (electromotive force) and THD were checked, and then the number of slots was determined. In addition, the most optimized generator dimensions were determined through a sizing optimization technique. Based on this, the optimum model with enhanced efficiency, material costs, and temperature characteristics was derived, and the availability of the design method was confirmed through a comparative analysis of the initial and optimum models.

The Analysis of 3MW Embedded Type PMSG for Wind Turbine (풍력 발전기용 3MW 매립형 영구자석동기발전기 해석)

  • Won, Jeonghyun;Lee, Sangwoo;Kim, D.E.;Chung, Chinwha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • This paper introduces a 3MW embedded Permanent Magnet Synchronous Generator(PMSG) for wind turbine. The generator features 313mm stator inner radius and 974mm stator length. The blade rotor angular velocity is 15.7 rpm and the gear ratio is set to be 92.93. The nominal generator rpm at rated load is about 1459. The number of poles is six and embedded in the generator rotor. Embedded permanent magnet excitation shows higher reliability, and better efficiency. Using the finite element method, electromagnetic and thermal results are simulated by ANSYS and the results are summarized in this report.

  • PDF

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Design of Control System for 1kW Grid-connected Permanent Magnet Synchronous Generator (가스 엔진용 1kW급 계통 연계 영구자석형 동기발전기 구동 시스템 설계)

  • Lee, Taeyeong;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.69-70
    • /
    • 2017
  • This paper presents design of control system for permanent magnet synchronous generator(PMSG). The gas engine make rotating mechanical energy from gas fuel energy. The rotor of synchronous generator is connected to axis of engine. And it converts the mechanical energy to the electrical energy. The control system of PMSG helps the electrical energy to flow to grid. the single phase pfc rectifier controls the DC-link voltage by controlling the current of filter inductor. If the DC-link voltage is higher than the voltage reference, the filter current could be controlled to flow to grid. The three phase inverter controls the stator current of generator. The direction of the current is controlled depends on motoring or generating mode. The feasibility of the grid-connected PMSG is verified by the experimental results with 1kW prototype.

  • PDF

Analytical Approach for Rotor Loss Prediction of Permanent Magnet Synchronous Generator with Multi-Pole Rotor (다극 회전자를 갖는 영구자석 동기 발전기의 회전자 손실 예측을 위한 해석적 접근)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Sung, Tae-Hyun;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.719-720
    • /
    • 2008
  • This paper deals with analytical approach for rotor loss prediction of permanent magnet synchronous generator(PMSG). The rotor losses of synchronous generator are induced by the magnets. Since stator of our model is skewed, slotting effect can be negligible for our PM wind turbine generator. In order to calculate eddy current, this paper derives analytical solutions by the magnetic vector potential. Finally this paper compared analytical result with eddy current density obtained from finite element(FE) calculations using phase current harmonics analysis.

  • PDF

Great capacity Generator of Wind Turbine (대용량 출력 풍력발전기 설계)

  • Hur, Man-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.366-368
    • /
    • 2007
  • Mr. Hur has developed the 7500KW permanent magnet synchronous generator. The 7500KW generator has dual blade system with vertical axis type generation module. The 7500KW generator will generating that it is too expensive and construction payment. The advantages of dual blade system are cheap in generation with better efficiency, and safety compact structure. But also this system has the expensive slide ring for to distribute electrical power.

  • PDF

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF