• Title/Summary/Keyword: Permanent Magnetic Field

Search Result 402, Processing Time 0.037 seconds

Research on Oscillation Character of Six-Phase Fractional-Slot Concentrated-Winding Permanent Motor with Different Slot-Pole Match

  • Qiao, Ming-zhong;Zhu, Yong-xin;Liang, Jing-hui;Li, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1693-1699
    • /
    • 2016
  • The oscillation character of permanent magnetic motor is highly related to its slot-pole match. By calculating air-gap magnet field and radial electromagnetic force of 6-phase fractional-slot concentrated-winding permanent magnetic motor with slot-pole match of 48/44, 48/46, 48/50 and 48/52 under no load and load status, oscillation character of permanent magnetic motor is analyzed. A 20kW prototype with 48 slots and 44 poles is designed. With many sensors attaching to the corresponding parts, oscillatory acceleration is measured, and spectrum of oscillation frequency is recorded as well. The experiment results give proof to the analysis method for permanent magnetic motor oscillation in this paper.

Inductance Calculation and Speed-Power Characteristic of Interior Type Permanent Magnet Synchronous Motor by FEM (유한요소법을 이용한 매입형 영구자석 동기전동기의 인덕턴스 산정 및 속도-출력 특성)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.408-416
    • /
    • 1999
  • The characteristics of permanent magnet synchronous motor are defined by airgap flux and circuit parameters. Interior Permanent Magnet Synchronous Motor(IPMSM) has a nonlinear characteristics due to structural speciality of rotor, so it is difficult to analyze circuit parameters and field-weakening characteristics of IPMSM. This paper presents the calculation of circuit parameters by using Finite Element Method(FEM) taken into consideration of nonlinear characteristics. Using the circuit parameters by FEM, IPMSM is analyzed to field-weakening characteristics and is compared with the Equivalent Magnetic Circuit(EMC) in which lumped parameter is consideration.

  • PDF

Development of the Caliper System for a Geometry PIG Based on Magnetic Field Analysis

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai;Park, Gwan-Soo;Park, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1835-1843
    • /
    • 2003
  • This paper introduces the development of the caliper system for a geometry PIG (Pipeline Inspection Gauge). The objective of the caliper system is to detect and measure dents, wrinkles, and ovalities affect the pipe structural integrity. The developed caliper system consists of a finger arm, an anisotropic permanent magnet, a back yoke, pins, pinholes and a linear hall effect sensor. The angle displacement of the finger arm is measured by the change of the magnetic field in sensing module. Therefore the sensitivity of the caliper system mainly depends on the magnitude of the magnetic field inside the sensing module. In this research, the ring shaped anisotropic permanent magnet and linear hall effect sensors were used to produce and measure the magnetic field. The structure of the permanent magnet, the back yoke and pinhole positions were optimized that the magnitude of the magnetic field range between a high of 0.1020 Tesla and a low of zero by using three dimensional nonlinear finite element methods. A simulator was fabricated to prove the effectiveness of the developed caliper system and the computational scheme using the finite element method. The experimental results show that the developed caliper system is quite efficient for the geometry PIG with good performance.

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.

Development of Detachable System of Permanent Magnet Wheel for Mobile Robot (이동로봇용 영구자석바퀴 착탈장치 개발)

  • 이화조;주해호;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.635-638
    • /
    • 2000
  • It is necessary to work on a vertical plane of workpiece in order to produce a large structure like a ship. These works can be automated by using the robot with permanent magnet wheels. We developed the permanent magnet wheel which can be used by a mobile robot and easily detached. We enhanced an adhesive power by restricting the occurrence direction of magnetic flow. And we also developed a method which weakens adhesive magnetic force by changing magnetic flow with metal pins. We used the load cell and the gaussmeter to measure the characteristics of the adhesive force and magnetic force. We obtained the result that the adhesive power is reduced to 1/3 of normal state by using 4 inducing pins.

  • PDF

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 -)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

A Magnetic Hysteresis Curve Tracer for Rare Earth

  • Rhee, J.R.
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.94-100
    • /
    • 1996
  • A hysteresis loop tracer using a pulsed high magnetic field of 113.4 kOe, which is suitable for rare earth based permanent magnets, is constructed. The high pulsed magnetic field is generated by discharging a large capacitance charge (5 mF) with a voltage of 600 V into an air solenoid with the inner diameter of 14 mm, outer diameter of 36 mm and the lingth of 34 mm. A computer simulation method is used for the construction of an electromagnet to optimize the many parameters such as the discharge current, generated pulsed magnetic field intensity, thermal dissipation, capacitance, charged voltage, period of damping oscillation and solenoid geometry. By using the hysteresis loop tracer constructed in this work, we are able to measure hystersis loops of several rare earth based permanent magnets with large values of the remanent magnetization, coercvity and energy product.

  • PDF

Design of an Electrodynamic Wheel for Transfer of Conductive Rod (전도성 환봉 이송용 동전기 차륜의 설계)

  • Park, Sung-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Instead of multi-phase ac current, the magnetic field travels spatially through mechanical rotation of permanent magnets at the electrodynamic wheel (EDW). Traveling of magnetic field generally leads to a generation of inductive force in the traveling direction. In this paper, we suggest a spiral EDW to travel the magnetic field in the axial direction of the conductive rod. So, it is possible to levitate and transfer the rod through multi-axial forces by the spiral EDW. However, physical dimensions of permanent magnets constituting EDW influence relative ratios between three-axial forces generated on the rod. Therefore, the sensitivity analysis for design parameters is performed using FEM analysis. The stable operation is verified experimentally.

A Study on the Design of Valve Mode MR Damper using Permanent Magnet (영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF