• 제목/요약/키워드: Permanent Magnet Model

검색결과 539건 처리시간 0.027초

Reduction of Torque Ripple in an Axial Flux Generator Using Arc Shaped Trapezoidal Magnets in an Asymmetric Overhang Configuration

  • Ikram, Junaid;Khan, Nasrullah;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.577-585
    • /
    • 2016
  • In this paper, model of the axial-flux permanent magnet synchronous generator (AFPMSG) having arc-shaped trapezoidal permanent magnets (PM) is presented. The proposed model reduces the cogging torque and torque ripple, at the expense of lowering the average output torque. Optimization of the proposed model is performed by considering the asymmetric overhang configuration of the PMs, as to make the output torque of the proposed model competitive with the conventional model. The time stepped 3D finite element analysis (FEA) is performed for the comparative analysis. It is demonstrated that the torque ripple of the optimized model is highly reduced as well as average output torque is increased.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

영구자석 동기 전동기의 고조파 주입 센서리스 기법 시뮬레이션 모델 (Simulation Model of Harmonics Injection Sensorless Technique for Permanent Magnet Synchronous Motor)

  • 윤진우;이동명
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.67-71
    • /
    • 2020
  • 본 연구에서와 같이 전동기의 저속 영역 운전의 센서리스 기법으로 적합한 고조파 주입 센서리스 제어기법의 시뮬링크 시뮬레이션 모델을 제안한다. 본 모델에 적용되는 전동기는 영구자석 전동기이다. 또한, 다양한 고조파 주입 기법중 1kHz 구형파를 주입하는 기법을 사용한다. 고조파 주입에 따른 전동기의 전동기 상수의 변화는 시뮬링크에서 제공하는 전동기의 상수조정을 통해 구현한다. 시뮬링크의 함수와 라이브러리에서 제공하는 모델을 통해 센서리스 기법을 구현한다. 전류에 포함된 고조파 성분을 필터를 이용하여 추출하고, 추출된 파형을 이용하여 영구자석 전동기의 각도를 검출함을 보인다. 그리하여 1kW 영구자석 전동기에 적용된 시뮬레이션 파형에서의 전동기 각도 추정파형과 전동기 제어관련 파형을 통해 시뮬레이션 모델의 타당성을 보인다.

IPM모터의 턴쇼트 고장모델에 관한 연구 (Development of Inter Turn Short Fault Model of IPM Motor)

  • 구본관
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.

영구자석 매입형 BLDC 모터 제어기의 모델링 및 시뮬레이션 (Modeling and Simulation of Interior Permanent - Magnet BLDC Motor Drive)

  • 이동명;안준호;염관호;조관열;김학원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.332-336
    • /
    • 1998
  • Recently, the BLDC(Brushless DC) motor has been increasingly applied to home appliance and the study of BLDC motor drive is extensively processing, so it is necessary to investigate the characteristic of the BLDC motor drive. In this paper, we proposed the modeling of interior permanent - magnet BLDC motor drive. The state model of motor and the model of inverter using pulse width modulation are included. The modeling is verified by the experimental results.

  • PDF

형구자석형 동기정동기의 적응제어에 의한 속도제어 (Speed Control of Permanent Magnet Synchronous Motor by Adaptive Control)

  • 유정웅;우광준
    • 대한전기학회논문지
    • /
    • 제38권3호
    • /
    • pp.166-172
    • /
    • 1989
  • The model reference adaptive control algorithm (MRAC), which is one of the methods for controlling the speed of a permanent magnet synchronous motor (PMSM), has been developed using the autoregressive (ARMAX) method. Applying this algorithm to a microprocessor which is used in driving PMSM with PI controller, it has been proved that the response speed of the reference input follows closely that of the reference model. It has also been proved by experiments that the quick speed response without over-shoot could be obtained for the motor system with variable parameters.

  • PDF

선형보간법을 이용한 매립형 영구자석 동기모터의 감자고장진단 (Demagnetization Fault Diagnosis in IPMSM Using Linear Interpolation)

  • 정혜윤;문석배;이호진;김상우
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.568-574
    • /
    • 2017
  • This paper proposes a demagnetization fault diagnosis method for interior permanent magnet synchronous motors(IPMSMs). In particular, a demagnetization fault is one of the most frequent electrical faults in IPMSMs. This paper proposes an estimation method for permanent magnet flux. The method is based on linear interpolation. The effectiveness of the proposed method for diagnose demagnetization faults is verified through various operating conditions by finite element simulation.

Suppression of Shaft Voltage by Rotor and Magnet Shape Design of IPM-Type High Voltage Motor

  • Kim, Kyung-Tae;Cha, Sang-Hoon;Hur, Jin;Shim, Jae-Sun;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.938-944
    • /
    • 2013
  • In this paper, we propose a method for suppressing shaft voltage by modifying the shape of the rotor and the permanent magnets in interior permanent magnet-type-high-voltage motors. Shaft voltage, which is induced by parasitic components and the leakage flux in motor-driven systems, adversely affects their bearings. In order to minimize shaft voltage, we designed a magnet rearrangement and rotor re-structuring of the motor. The shaft voltage suppression effect of the designed model was confirmed experimentally and by comparative finite element analysis.

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.