• 제목/요약/키워드: Permanent Magnet Model

검색결과 540건 처리시간 0.025초

자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법 (Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM)

  • 박병준;구본관
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화 (Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE)

  • 권준환;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

Predictive control and modeling of a point absorber wave energy harvesting connected to the grid using a LPMSG-based power converter

  • Abderrahmane Berkani;Mofareh Hassan Ghazwani;Karim Negadi;Lazreg Hadji;Ali Alnujaie;Hassan Ali Ghazwani
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.17-52
    • /
    • 2024
  • In this paper, the authors explore the modeling and control of a point absorber wave energy converter, which is connected to the electric grid via a power converter that is based on a linear permanent magnet synchronous generator (LPMSG). The device utilizes a buoyant mechanism to convert the energy of ocean waves into electrical power, and the LPMSG-based power converter is utilized to change the variable frequency and voltage output from the wave energy converter to a fixed frequency and voltage suitable for the electric grid. The article concentrates on the creation of a predictive control system that regulates the speed, voltage, and current of the LPMSG, and the modeling of the system to simulate its behavior and optimize its design. The predictive model control is created to guarantee maximum energy output and stable grid connection, using Matlab Simulink to validate the proposed strategy, including control side generator and predictive current grid-side converter loops.

연속 이중 폐쇄 루프 완전 제어 전략 기반 직접 구동 풍력 전력망 연결 시스템 연구 (Research on the Direct-drive Wind Power Grid-connected System Based on the Back-to-back Double Closed-loop Full Control Strategy)

  • 소헌용;김한길;한개;정회경
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.661-668
    • /
    • 2024
  • 전력전자 풀파워 컨버터 기반의 직접 구동 영구자석 동기 풍력발전 그리드 연계 시스템의 토폴로지를 기반으로 풍력터빈 모델과 그리드 측 인버터 모델을 연구하고, 기계측 정류기 제어 기반의 전류 및 속도 이중 폐쇄 루프 전략과 전류 및 전압 이중 폐쇄 루프를 기반으로 한 그리드 측 인버터 제어 전략을 설계하여 2레벨 연속 이중 폐쇄 루프 완전 제어 전략을 구현했다. MATLAB/Simulink를 이용하여 시스템 시뮬레이션 모델을 구축하였고, 풍속이 단계별로 변할 때의 장치의 동작을 시뮬레이션하였으며, 그리드 전압의 동일한 위상과 양호한 정현파 특성을 갖는 그리드 연결 전류를 출력하였다. 연결된 시스템이 안정적이고 효율적으로 실행되었다. 시뮬레이션 결과 모델의 타당성과 합리성, 제어 전략의 정확성과 타당성을 검증하였다.

단상 BLDC 전동기의 코깅토크 저감을 위한 고정자 형상 최적설계 (Optimal Design of Stator Shape for Cogging Torque Reduction of Single-phase BLDC Motor)

  • 박용운;소지영;정동화;유용민;조주희;안강순;김대경
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1528-1534
    • /
    • 2013
  • This paper proposes the optimal design of stator shape for cogging torque reduction of single-phase brushless DC (BLDC) motor with asymmetric notch. This method applied size and position of asymmetric notches to tapered teeth of stator for single-phase BLDC motor. Which affects the variation of the residual flux density of the permanent magnet. The process of optimal design included the extraction of the sampling point by using Latin Hypercube Sampling(LHS), and involved the creation of an approximation model by using kriging method. Also, the optimum point of the design variables were discovered by using the Genetic Algorithm(GA). Finite element analysis was used to calculate the characteristics analysis and cogging torque. As a result of finite element analysis, cogging torque were reduced approximately 39.2% lower than initial model. Also experimental result were approximately 38.5% lower than initial model. The period and magnitude of the cogging torque were similar to the results of FEA.

가변속 풍력터빈이 연계된 배전선로의 전압변동 및 고조파 영향 (Distribution Feeder Aspects of a Variable Speed Wind Turbine in Voltage Fluctuations and Harmonics)

  • 김슬기;김응상
    • 에너지공학
    • /
    • 제12권4호
    • /
    • pp.309-319
    • /
    • 2003
  • 본 논문의 목적은 가변속 풍력터빈이 배전망에 미치는 영향을 평가하기 위한 모의해석 모델을 제시하고 제시된 모델을 사용하여 배전망에서의 전력품질에 대한 모의해석을 수행하는 것이다. 모델링된 풍력발전 시스템은 고정피치각을 갖는 풍력터빈과 영구자석형 동기발전기로 구성되며 전력전자 인버터에 의해 가변속 운전 및 무효전력 출력제어가 이루어진다. 풍력터빈 연계에 의한 전압변동 및 고조파 문제를 언급하며, 그 영향에 대하여 제시한 모델을 사용하여 정상상태 및 동특성 해석을 수행한다. 다양한 용량과 다른 출력제어방식의 가변속 풍력터빈을 이용하여 모의하고 평가한다. 사례연구들을 통해 각기 다른 계통상태에서 풍속의 변동 및 다른 출력제어방식에 따른 배전망의 전압변동에 미치는 영향과 고조파 문제를 보여준다. 모델링 및 모의는 PSCAD/EMTDC 프로그램을 기반으로 하여 수행한다.

듀얼 서보모터 구동형 프레스 시스템의 동기화 제어기법 연구 (A Study on Synchronization Control Technique of Dual-Servo Press System)

  • 나상건;권오신;강재훈;허훈
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.206-215
    • /
    • 2013
  • In this paper, a synchronization control technique of dual-servo motor driven press system is proposed. An independent cascade PID control technique has been applied to the conventional press system for advancement of control stability. However, it is not easy to reduce synchronous error using the independent cascade PID control technique when some different load disturbances are involved in each motor. The eccentric error of the slide caused by the problem degrade the control performance of the BDC(Bottom Dead Center). In order to achieve reduction of the synchronous error between two servo motors and accurate position control simultaneously, a new control scheme comprised with cascade PID control loop and cross-coupling loop is proposed. In simulation using Matlab SIMULINK, the AC servo system is designed. The control performance of proposed technique is compared with conventional control technique to the model of AC servo system. Also, the sub-scale model of dual-servo motor driven press system which can replicate the slide motion is constructed for experimental verification for the performance of the proposed control technique. The cross-coupling control technique reveals more precise and stable performances in the position and synchronization controls.

건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발 (Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures)

  • 정상섭;장석명;이성호;윤인기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권11호
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM Drive using Multi AFLC)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

영구자석 동기전동기 구동을 위한 전압원 인버터의 적응제어기법을 이용한 전압 왜곡 관측 및 보상 (Observation and Compensation of Voltage Distortion of PWM VSI for PMSM using Adaptive Control Method)

  • 김학원;윤명중;김현수;조관열
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.52-60
    • /
    • 2005
  • 펄스 폭 변조 전압원 인버터에서는 전압 명령과 실제 전압 사이에 전압 차 또는 전압 왜곡이 존재한다. 이 전압 왜곡은 동작 온도, DC 링크 전압, 및 상전류 수준에 따라 달라진다. 또한 전압 왜곡은 전류 왜곡, 전동기 토크 맥동, 그리고 제어 성능에 영향을 미친다. 본 논문에서는 펄스 폭 변조 전압원 인버터의 전압 왜곡을 분석하고, 모델기준 적응 시스템(Model Reference Adaptive System)을 기반으로 하여 영구자석 동기 전동기의 파라미터 변화에 강인한 새로운 실시간 전압 왜곡 관측 기법을 제안한다. 그리고 제안된 전압 왜곡 관측 및 보상 기법에 대한 모의실험 및 실험을 통해서 그 효용성을 증명한다.