• Title/Summary/Keyword: Perlite

Search Result 445, Processing Time 0.026 seconds

A Study on the Estimation of Zoysia matrella's Evaporation Using Makkink Model (인공지반에서 금잔디의 증발산량 예측에 관한 연구 -퍼라이트 배합토에서 Makkink의 일사법을 이용하여-)

  • 김도경;황지환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The purpose of this study is to find out the difference of Zoysia matrella's evaporation in between 100 percent soil and mixed soil with 50 percent of perlite to create green spaces on the artificial ground. It is believed that the weight against the artificial ground will be reduced, provided the vegetation is possible in the circumstance of the mixed sol with 50 percent of perlite. The study employed a modified Makkink's model by Iwasa who had developed the model for estimating Zoysia matrella's evaporation in the natural ground using the Makkink's formula in 1997 at Chiba University, Japan. The parameter of Makkink's formula is the solar radiation. For that reason, the Makkink's formula is simple and easy to measure the parameter and has a high utility. If the outcomes from mixed soil are close to modified Makkinks formula, the modified Makkink's formula will be applied to estimate in the artificial ground with mixed soil with 50 percent of perlite. Weather observation and actual amount of evaporation of Zoysia matrella have been measured, and the relation between weather condition and actual amount of evaporation had been also investigated. In line with this, we found out that there is a relevant relationship between daily average temperature, the modified Makkink's model by Iwasa, and the actual amount of evaporation. As the results of the experiment, the outcomes from mixed soil with 50 percent of perlite have very high relation to 100 percent soil. In addition, mixed soil has more adhesion with water than natural soil. However, it needs to be adequately maintained in terms of fertilization and damage from disease and harmful insects until the gras fastens its roots into the soil. By using mixed soil with 50 percent of perlite, the load from soil on the artificial ground can be reduced. The study on the growth of the grass throughout the plant vegetation and the actual amount of evaporation in the mixed soil with 50 percent of perlite should be performed in the future.

  • PDF

Water Holding Capacity and Hydraulic Conductivity According to Compaction and Saturation Degree for Perlite amended with Ground Coir (압밀과 포화수준에 따른 분쇄 Coir 혼합 펄라이트의 수분보유력과 수리전도도)

  • Kim, Gi-Rim;Woo, Hyun-Nyung;Kim, Hye-Jin;Park, Mi-Suk;Song, Jin-A;Song, Tae-Yong;Jang, Hyo-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.998-1003
    • /
    • 2011
  • This investigation was performed to determine the hydraulic conductivity coefficient and water holding capacity for a specified compaction forces which are the amount of mechanical energy applied to the porous granule (PG) volume. Most current specifications of minerals and perlite as growth media require to be compacted to a specified density, which in general is equivalent to a certain percentage of laboratory compaction. The water holding capacity of the saturated PG was very large at potential above -1 bar compared with perlite, but very little water remained below this value. The water holding capacity and hydraulic conductivity characteristics of graded PG amended with the ground coir less than 2 mm in diameter were also determined from pressure outflow data. The saturated hydraulic conductivity of the saturated and compacted PG was slightly lower by more than one tenth order of magnitude at equal matric potentials of perlite, but when expressed on the basis of equal water deficits, the conductivity of PG was higher at all but the smallest deficits than those of perlite.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

A Study on Improvement of Fire-resistant and Flame-retardant Properties of Silicone Rubber Composites Containing Perlite (펄라이트를 첨가한 실리콘 고무 복합체의 내화 및 난연 특성 향상에 관한 연구)

  • Lee, Byung-Gab;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young;Jhee, Kwang-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this study, silicone rubber filled with environmentally-friendly perlite was prepared by mechanical mixing in order to improve thermal properties, such as heat and fire resistances. We found that the properties of silicone rubber composites depended on perlite concentration by various characterization methods. Thermogravimetric analysis(TGA) indicated that the initial degradation temperature of silicone/perlite composite was higher than that of pristine silicone rubber. The gas torch test showed that the opposite side temperature of composite materials was remarkably low as compared to that of pristine silicone rubber. In addition, the composites containing 5 wt% and 10 wt% of perlite showed remarkable thermal stability at elevated temperatures according to the results of both fireproof furnace tests under the RABT condition and carbonization furnace tests. The images from a scanning electron microscope(SEM) showed the degree of dispersion of perlite in silicone rubber. Finally, it was confirmed that limited oxygen index(LOI) was increased with perlite concentration.

A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites (팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3286-3291
    • /
    • 2014
  • A study on the crack protection and thermal insulation properties of the expanded perlite inorganic composites was performed. Mixed expanded perlite with a water glass was stabilized for 24 hrs at room temperature in the mold and, thereafter, converted into a massive foamed body through complete drying process at $150^{\circ}C$. Aluminum phosphate and micron size mica powder were used as a reaction accelerator and a stabilizer for thermal crack, respectively. Especially, use of mica exhibited a remarkable effect on the protection of thermal crack at higher temperature over $500^{\circ}C$, and thermal conductivity of the composites was enhanced with higher perlite contents, showing ca. 0.09 W/mK for the sample of 100/200/10/1.5 water glass/perlite/mica/Al phosphate by weight. A severe dimensional deformation of the composite materials was observed over $600^{\circ}C$, however, showing a temperature limitation for a practical application. The facts were considered as the results from the glass transition temperature of the water glass, of which main component is sodium silicate.

Effect of Substrates on the Growth and Flowering of Freesia hybrid 'Gold Rich' in Nutrient Culture (프리지아(Freesia hybrida) '골드리치'의 양액재배 시 인공배지별 생육 및 개화특성)

  • Lee, Jin-Jae
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.30-37
    • /
    • 2017
  • This study was conducted to determine the effects of various growth substrates on the growth and flowering of hydroponically grown Freesia hybrid 'Gold Rich'. Perlite, peat moss and a perlite: peat moss mixture (1 : 1 ratio, v / v) were used as the growing media. The greatest plant height before flower bud differentiation was attained using mixed medium compared to the others. The type of medium used did not influence leaf number, mineral content or SPAD value in leaves. Flowering began at 137 days after planting in mixed medium, which was 13 days earlier than in perlite medium. The whole plant fresh weight was 21.3 g heavier in mixed medium than in perlite medium (40.9 g). A similar result was obtained for shoot length, with the highest value (96.6 cm) obtained in mixed medium, i.e., 20 cm higher than in perlite medium (76.6 cm). Floret number per plant was also the highest in mixed medium (14.4), i.e., 1.7 - times higher than in perlite medium. Therefore, among the substrates tested in this experiment, we recommend using mixed perlite: peat moss medium (1 : 1 ratio, v / v) for hydroponic culture of freesia, as the use of this medium improved the physical properties of the plants, producing the best results in terms of plant growth and cut-flower quality.

Growth and Yield Response of Perilla Plants Grown under Different Substrates in Hydroponic System (잎들깨 수경재배에서 배지 종류에 따른 식물 생육 및 수량의 반응)

  • Shin, Minju;Jeong, Ho Jeong;Roh, Mi Young;Kim, Jin Hyun;Song, Kwan Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.292-299
    • /
    • 2022
  • This study was conducted to analyze physical and chemical properties of horticultural substrates and response of hydroponically grown two cultivars of 'Namcheon' and 'Somirang' perilla by four different substrates: coir (chip:dust = 5:5), perlite, granular rockwool, and commercial mixed substrate (cocopeat:peatmoss:vermiculite:perlite: zeolite = 50:25:10:10:5). There were no significant differences in EC and pH according to substrates. Container capacity was the greatest in granular rockwool, and it showed appropriate levels in mixed substrate and coir. Air space was higher in coir and perlite than the other treatments. Bulky density reached a proper standard in all substrates excepting coir. The leaf length and width of 'Namcheon' indicated the most in mixed substrate, though the value of 'Somirang'was greatest in coir substrate. The leaf weight of both cultivars was highest in mixed substrate, and relatively low in coir and perlite. The total yield of leaves was separated by two groups: higher group, which are mixed substrate and granular rockwool, and lower group, which are coir and perlite. There was a large gap by 28% between these two groups. Therefore, this study suggests that substrates with high water holding capacity such as mixed substrate or granular rockwool are most suitable for the hydroponic cultivation of perilla, which require sufficient moisture supply to the root zone.

Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상)

  • Lim, Seo-Hyung;Yoo, Suk-Hyung;Moon, Jong-Woog
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.8-13
    • /
    • 2011
  • High strength concrete is the occurrence of explosive spalling associated with high temperature such as a fire. The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. The purpose of this study is to investigate the mechanical properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to perlite, contents of polypropylene fiber. As a result of this study, it has been found that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

Soil conditions during cultivation affect the total phenolic and flavonoid content of rosemary

  • Seo, Ji Won;Kim, Soo Kyung;Yoo, Ji Hye;Kim, Myong Jo;Seong, Eun Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.89-92
    • /
    • 2022
  • In this study, the effects of soil conditions on antioxidant activities of the aerial and underground parts of rosemary were assessed to determine the most effective soil conditions for cultivation. The antioxidant activity was the highest (51.58±2.93 ㎍/mL) when cultivated in the mixture of gardening soil and vermiculite using DPPH assay. The antioxidant activity of underground parts the highest (127.48±12.38 ㎍/mL) when cultivated in the mixture of soil, vermiculite, and perlite. ABTS assay showed that the antioxidant activity of aerial parts was 230.34±57.93 ㎍·mL-1 when cultivated in the mixture of gardening soil and vermiculite and that of underground parts was 320.98±16.04 ㎍·mL-1 when cultivated in the mixture of gardening soil, vermiculite, and perlite. The total phenolic content of aerial parts was the highest (155.25±2.96 mg GAE/g) when cultivated in the mixture of gardening soil. The total flavonoid content of aerial parts was the highest (67.32±5.27 mg QE/g) when cultivated in the mixture of gardening soil. Therefore, the mixture of gardening soil, vermiculite, and perlite is superior to gardening soil alone for cultivation of rosemary to increase its antioxidant activity as well as total phenolic and flavonoid content.